
Prepared exclusively for Jeanne McDade

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As an experiment,

we’re releasing this copy well before we normally would. That way

you’ll be able to get this content a couple of months before it’s avail-

able in finished form, and we’ll get feedback to make the book even

better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos. And

there’s been no effort spent doing layout, so you’ll find bad page

breaks, over-long lines, incorrect hyphenations, and all the other ugly

things that you wouldn’t expect to see in a finished book. We can’t

be held liable if you use this book to try to create a spiffy application

and you somehow end up with a strangely shaped farm implement

instead. Despite all this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs

from your personal home page at http://www.pragprog.com/my_account

(you’ll need to create an account if you don’t already have one). When

the book is complete, you’ll get the final version (and subsequent

updates) from the same address. In the meantime, we’d appreciate

you sending us your feedback at http://pragprog.com/titles/fr_arr/errata.

Thank you for taking part in this experiment.

Dave and Andy

Prepared exclusively for Jeanne McDade

http://www.pragprog.com/my_account
http://pragprog.com/titles/fr_arr/errata

Advanced Rails Recipes

Mike Clark and the Rails Community

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Jeanne McDade

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Mike Clark.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-2-1

ISBN-13: 978-0-9787392-2-5

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

B1.02 printing, January 2, 2008

Version: 2008-1-2

Prepared exclusively for Jeanne McDade

http://www.pragprog.com

Contents
1 Introduction 9

1.1 What Makes a Good Recipe Book? 9

1.2 What Makes This an Advanced Recipe Book? 10

1.3 Who’s It For? . 10

1.4 Who’s Talking? . 11

1.5 Rails Version . 11

1.6 Resources . 11

1.7 Acknowledgments . 12

1.8 Tags and Thumb tabs . 13

Part I—REST and Routes Recipes 14

1. Putting A Resource On The Web 15

2. Adding Your Own REST Actions (Or Not) 20

3. Authenticating REST Clients 23

4. Custom Response Formats 29

5. Catch All 404s . 33

Part II—Search Recipes 36

6. Improve SEO with Dynamic Meta Tags 37

7. Full-Text Search with Ferret 40

8. Active Record on Solr . 45

Part III—Database Recipes 50

9. Adding Foreign Key Constraints 51

10. Write Your Own Custom Validations 54

11. Analyzing SQL Queries 58

12. Taking Advantage of Master/Slave Databases 61

Prepared exclusively for Jeanne McDade

CONTENTS 6

Part IV—User Interface Recipes 64

13. Replacing In-View Raw JavaScript with RJS 65

14. Handling Multiple Models In One Form 67

15. Simplifying Controllers With a Presenter 74

16. Validating Required Form Fields Inline 79

17. Creating a Wizard . 83

18. Updating Partial Resources with Ajax 92

19. Uploading Images and Creating Thumbnails 95

20. Decouple Your JavaScript with Low Pro 102

Part V—Design Recipes 108

21. Freshening Up Your Models With Scope 109

22. Keeping Forms Dry and Flexible 115

23. Prevent Train Wrecks with Delegate 120

24. Creating Meaningful Relationships Through Proxies . . 123

Part VI—Asynchronous Recipes 126

25. Processing an Asynchronous Workflow 127

26. Off-Loading Long-Running Tasks to BackgrounDRb . . 133

Part VII—E-mail Recipes 141

27. Validating E-mail Addresses 142

28. Receiving E-mail Reliably via POP or IMAP 145

29. Keeping E-mail Addresses Up To Date 151

Part VIII—Console Snacks 156

30. Writin’ Console Methods 157

31. Console Loggin’ . 159

32. Playin’ in the Sandbox . 161

33. Accessin’ Helpers . 162

34. Shortcuttin’ the Console 163

Part IX—Testing 165

35. Creating Your Own Rake Test Tasks 166

36. Testing JavaScript With Selenium 169

37. Mocking With a Safety Net 174

38. Getting Started with BDD 176

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=6

CONTENTS 7

39. Describing Behaviour from the Outside-In With RSpec . 181

40. Reducing Dependencies with Mocks 188

41. Fixtures Without Frustration 192

42. Tracking Test Coverage with RCov 196

43. Testing HTML Validity . 200

Part X—Performance and Scalability Recipes 204

44. Looking Up Constant Data 205

45. Serving Page Caches to Facebook 209

46. Profiling In The Browser 211

47. Caching Up With the Big Guys 215

48. Dynamically Updating Cached Pages 222

Part XI—Security Recipes 226

49. Flipping On SSL . 227

50. Locking Down Sensitive Data 230

Part XII—Deployment and Capistrano Recipes 232

51. Custom Maintenance Pages 233

52. Running Multi-Stage Deployments 237

53. Creating New Environments 240

54. Managing Plugin Versions 243

55. Safeguarding the Launch Codes 246

56. Config Files On-The-Fly 247

57. Preserving Files Between Deployments 249

58. Responding To Remote Prompts 251

59. Generating Custom Error Pages 253

Part XIII—Big-Picture Recipes 257

60. Avoid Starting From Scratch 258

61. Fail Early . 261

62. Analyzing Your Log Files 263

63. Formatting Dates and Times 268

64. Geocoding to Find Things By Location 271

65. Giving Users Their Own Subdomain 277

66. Tunneling Back to Your Application 281

67. Monitoring (and Repairing) Processes with Monit 285

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=7

CONTENTS 8

A Bibliography 288

Index 289

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=8

Chapter 1

Introduction
1.1 What Makes a Good Recipe Book?

If I were to buy a real recipe book—you know, a book about cooking

food—I wouldn’t be looking for a book that tells me how to dice vegeta-

bles or how to use a skillet. I can find that kind of information in an

overview about cooking.

A recipe book is about how to make food you might not be able to easily

figure out how to make on your own. It’s about skipping the trial and

error and jumping straight to a solution that works. Sometimes it’s even

about making food you never imagined you could make.

If you want to learn how to make great Indian food, you buy a recipe

book by a great Indian chef and follow his or her directions. You’re not

just buying any old solution. You’re buying a solution you can trust to

be good. That’s why famous chefs sell lots and lots of books. People

want to make food that tastes good, and these chefs know how to make

(and teach you how to make) food that tastes good.

Good recipe books do teach you techniques. Sometimes they even teach

you about new tools. But they teach these skills within the context and

with the end goal of making something—not just to teach them.

My goal for Advanced Rails Recipes is to teach you how to make great

stuff with Rails and to do it right on your first try. These recipes (and

the techniques they contain) are extracted from my own work and from

the work of other “great chefs” of Rails around the community.

I also hope to show you not only how to do things but to explain why

they work the way they do. After reading through the recipes, you

Prepared exclusively for Jeanne McDade

WHAT MAKES THIS AN ADVANCED RECIPE BOOK? 10

should walk away with a new level of Rails understanding to go with

a huge list of successfully implemented hot new application features.

Not all of these recipes are full meals. To spice things up, I’ve included

a number of smaller side dishes, which I’ve called snacks. Typically one

or two pages long, these snacks will help satisfy those cravings we all

get between meals.

1.2 What Makes This an Advanced Recipe Book?

Sushi is a treat for the eyes, as much as it’s a treat for my taste buds.

The sushi chefs behind the bar of my favorite local spot take great pride

in making not only delicious dishes, but exquisite looking ones as well.

And they seem to derive a great deal of satisfaction when their creations

are enjoyed by me—a hungry programmer. Their goal isn’t to have me

stumble away from the table stuffed to the gills, but instead for me to

leave pleasantly satisfied by the entire experience.

My goal for this book is similar. I don’t want to load you up with heaps

of cryptic, overly-clever code that sits heavy in your application. In my

opinion, that’s not what being advanced is about. It’s actually the other

way around: the programmers I admire strive to find elegant, practical

solutions to complex problems. Indeed, making the code work is the

easy part. Like the sushi chef, it’s the presentation that takes a lifetime

to master.

When the first Rails Recipes [Fow06] book was written, most of the Rails

knowledge was concentrated in a small group of experts. These days,

with new Rails applications being launched almost weekly and so many

different problems being solved, the state of the art is spread across the

community.

To accurately capture what specific problems advanced Rails develop-

ers are tackling, and how, we asked the Rails community to contribute

their own special recipes. This book is an informal survey of what the

best developers in the Rails community think is advanced and impor-

tant.

1.3 Who’s It For?

Advanced Rails Recipes is for people who understand Rails and now

want to see how an experienced Rails developer would attack spe-

cific problems. Like with a real recipe book, you should be able to flip

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=10

WHO’S TALKING? 11

through the table of contents, find something you need to get done, and

get from start to finish in a matter of minutes.

When you’re busy trying to make something you don’t have spare time

to read through introductory material. I’m going to assume you know

the basics and that you can look up API details in a tutorial or an online

reference. So if you’re still in the beginning stages of learning Rails, be

sure to have a copy of Agile Web Development with Rails [TH05] and a

bookmark to the Rails API documentation handy.1

1.4 Who’s Talking?

As this book is a compendium of tasty and unique recipes from the

community of Rails developers, I’ve adopted a few conventions to keep

the voice of the book consistent.

When a problem is being solved, we’re doing it together—you, the reader,

and the contributor of the recipe (“Let’s build an ark, shall we?”). Then,

when the contributor of the recipe needs to relay something about their

experience, look for I and my (“I have a yellow rubber ducky on top of

my monitor.”). Lastly, if I want to comment on recipes that aren’t my

own, I’ll include a “Mike says...” note.

1.5 Rails Version

The examples in this book, except where noted, require Rails 2.0 or

higher. The Capistrano examples are based on Capistrano 2.0. I made

no attempt to try them with older versions.

1.6 Resources

The Pragmatic Programmers have set up a forum for Advanced Rails

Recipes readers to discuss the recipes, help each other with problems,

expand on the solutions, and even write new recipes. You can find the

forum by following the Discussions link from the book’s home page at

http://pragprog.com/titles/fr_arr.

The book’s errata list is at http://pragprog.com/titles/fr_arr/errata. If you

submit any problems you find, we’ll list them there.

1. http://api.rubyonrails.org

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://pragprog.com/titles/fr_arr
http://pragprog.com/titles/fr_arr/errata
http://api.rubyonrails.org
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=11

ACKNOWLEDGMENTS 12

You’ll find links to the source code for almost all the book’s examples

at http://pragprog.com/titles/fr_arr/code.

If you’re reading the PDF version of this book, you can report an error

on a page by clicking the “erratum” link at the bottom of the page,

and you can get to the source code of an example by clicking the gray

lozenge containing the code’s file name that appears before the listing.

1.7 Acknowledgments

Recipe contributions include the contributor’s name and bio. Any errors

or omissions are my own as the editor.

Thank you all for taking the time to share your tips and and tricks!

It’s been a lot of fun working with you. If your recipe didn’t make it

into this version of the beta book, don’t despair. I’ll be rolling more out

incrementally as the book progresses.

Chad Fowler was the real inspiration behind this book. His original

Rails Recipes [Fow06] book continues to be a source of practical Get

Er’ Done! techniques while I’m developing Rails apps. This book tries

to follow the same style and format as the original. Thanks, Chad, for

being an invaluable mentor throughout this process!

The Rails core team were very helpful in reviewing recipes. Thanks

guys, for being a sounding board and patiently working through prob-

lems with me. And double-thanks to Jamis Buck for also reviewing

Capistrano recipes.

Nicole makes everything possible. She encouraged me to compile and

edit this book, knowing full well what that actually meant.

Most important, thank you, dear reader, for reading this book. It means

a great deal to me that you would take the time. I hope we get to meet

someday soon.

Mike Clark

December 2007

mike@clarkware.com

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://pragprog.com/titles/fr_arr/code
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=12

User Interface

Testing

Security

Search

Routing

REST

Performance

Integration

E-mail

Design

Deployment

Database

Console

Configuration

Capistrano

TAGS AND THUMB TABS 13

1.8 Tags and Thumb tabs

I’ve tried to assign tags to each recipe. If you want to find

recipes that have something to do with Mail, for example,

find the Mail tab at the edge of this page. Then look down

the side of the book: you’ll find a thumb tab that lines up

with the tab on this page for each appropriate recipe.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=13

Part I

REST and Routes Recipes

14
Prepared exclusively for Jeanne McDade

Recipe 1

Putting A Resource On The

Web

Problem

You’ve heard all the buzz about creating RESTful this and that. There’s

little doubt that Rails 2.0 heavily favors the REST architectural style,2

and will continue to.

You’re feeling a little out of the loop, and what you’ve heard so far is

a tad too academic. As a practical matter, you’d like create a web-

accessible API for one of your models and, as a bonus, learn some

conventions to help keep your controllers skinny. What can resources

do for you?

Solution

Let’s forget about REST for a moment and try to solve a problem. Let’s

say we organize events and we want a web-based interface for creat-

ing, reading, updating, and deleting events (folks in the know call that

CRUD). Scaffolding is the quickest way to get from a database schema

to the user. And in Rails 2.0, we can put up scaffolding in one fell

swoop:

$ script/generate scaffold event name:string description:text ←֓

price:decimal starts_at:datetime

That command generates a bunch of code: a controller with no less

than seven actions, template files for actions that need them, and even

a migration file with the database columns we asked for. The only thing

left for us to do is create the database and apply the migration:

$ rake db:create

$ rake db:migrate

Now we fire up the application, and we have a full HTML interface to

CRUD (the verb form) events. It sounds like the old Rails scaffolding,

but there’s a twist. You may have noticed that the following line was

added to our config/routes.rb file:

2. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Prepared exclusively for Jeanne McDade

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

1. PUTTING A RESOURCE ON THE WEB 16

map.resources :events

What that does is subtle, but significant: It dynamically adds a bunch of

routes for accessing our events (called resources) via URLs. The routes

map to the seven actions in our controller: index, show, new, create, edit,

update, and destroy. We can see all the routes by typing:

$ rake routes

Let’s look at a few just to get a taste of what’s going on behind the

scenes. First, we have routes for dealing with the events collection:

events GET /events {:action=>"index", :controller=>"events"}

POST /events {:action=>"create", :controller=>"events"}

So, to list all our events—the index action—we’d send in the URL /events.

And inside of our application we can use the events_url helper to generate

a URL for listing the events. The exact same incoming URL is mapped

to our create action. The only difference is the HTTP verb that’s used:

GET is a read-only operation that lists the events and POST is a write

operation that creates a new event in our collection.

We also have routes for dealing with a specific member of the events

collection:

event GET /events/:id {:action=>"show", :controller=>"events"}

PUT /events/:id {:action=>"update", :controller=>"events"}

Again, the URL is the same for both actions. The HTTP verb is used to

disambiguate whether we want to read or update a single event by its

primary key. Inside our application, we can use event_url(@event), for

example, to generate a URL to show our event.

So, in summary, the map.resources line generates routes into our appli-

cation using both the incoming URL and an HTTP verb. The immediate

upshot is we can make any of our models into resources (events, reg-

istrations, users, etc.) and then manipulate them through a uniform

URL scheme. It’s just one more example of Rails conventions removing

guesswork.

OK, that’s all well and good. But browsers generally issue GET and POST

requests, leaving the other HTTP verbs to the academics. So how do we

tell our application that we want to update an existing event (a PUT) or

delete an event (a DELETE)? Well, that involves a few more new conven-

tions.

If we have an @event model object (and it’s declared to be a resource),

then in our new.html.erb and edit.html.erb forms, we can simply use:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

/events
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=16

1. PUTTING A RESOURCE ON THE WEB 17

<% form_for(@event) do |f| %>

The form_for will generate the appropriate form tag depending on the

state of the @event object. If it’s a new record, form_for generates this:

<form action="/events" method="post">

This will post to our create action because the HTTP verb and URL

map to that action. However, if the event is an existing record, the form

needs to post to the update action. To do that, it slaps in a hidden

field to simulate a PUT operation which in turn triggers the proper route

when Rails intercepts the request:

<form action="/events/1" method="post">

<input name="_method" type="hidden" value="put" />

OK, so at the end of all this we’re still managing events in the browser,

just with special URLs. This gives our resources uniformity on the web

and helps clean up a bunch of code inside our application.

Now let’s say we’d like to introduce this application to another, and

have them speak XML to each other. For that we turn our attention to

the scaffold-generated index action. It has the familiar stuff, but it also

sports a respond_to block:

Download Rest/app/controllers/events_controller.rb

def index

@events = Event.find(:all)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @events }

end

end

Here’s what’s going on. The action that sets up a collection of events,

and how they’re rendered (the format) depends on what the client asks

for. By default, browsers prefer HTML. In that case the action falls

through the bottom and renders the index.html.erb template.

Here’s where things get interesting. The URL conventions for CRUDing

our event resources gives us a common lingo and respond_to gives us a

way to vary how the resources are represented. So if our other applica-

tion (the client program) wants to fetch a resource collection or member

as XML, it simply tacks .xml to the end of the URL:

http://localhost:3000/events.xml

http://localhost:3000/events/1.xml

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/events_controller.rb
http://localhost:3000/events.xml
http://localhost:3000/events/1.xml
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=17

1. PUTTING A RESOURCE ON THE WEB 18

That gives us some XML back. Our client program might also want to

create, update, or delete events. To do that, it needs to send a hunk

of XML to the appropriate resource URL using the corresponding HTTP

verb. But what we really want is a client-side program that does all that

for us. After all, given the routing conventions used by map.resources it

should be fairly easy to generalize remote access.

Enter Active Resource. It’s a library that knows how to build URLs for

accessing Rails resources, and it’ll push XML over HTTP until the cows

come home. Indeed, here’s where having an application that responds

to XML really shines.

First, we write a standalone Ruby program: the Active Resource client.

It doesn’t need to load Rails per se, but we do need to tell it where Active

Resource lives on our file system:

Download Rest/services/event.rb

require File.join(File.dirname(__FILE__),

"../vendor/rails/activeresource/lib/active_resource")

We have a collection of event resources living in our server, so next we

create a proxy class pointing to where its resource lives:

Download Rest/services/event.rb

class Event < ActiveResource::Base

self.site = "http://localhost:3000"

end

Now the fun begins. All the standard CRUD-level operations are avail-

able, as if our proxy class was a real Active Record model. Let’s find all

the events and print their names:

Download Rest/services/event.rb

events = Event.find(:all)

puts events.map(&:name)

Perhaps we need to find a specific event and update its attributes:

Download Rest/services/event.rb

e = Event.find(1)

e.price = 20.00

e.save

And to round out the tour, we can also create and delete events:

Download Rest/services/event.rb

e = Event.create(:name => "Shortest event ever",

:starts_at => 1.second.ago)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/services/event.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/services/event.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/services/event.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/services/event.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/services/event.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=18

1. PUTTING A RESOURCE ON THE WEB 19

e.destroy

A lot is happening behind the scenes. To see which URLs it’s using, let’s

configure a logger:

Download Rest/services/event.rb

ActiveResource::Base.logger = Logger.new("#{File.dirname(__FILE__)}/ares.log")

Here’s the output, which can be quite handy for debugging an onerous

client:

GET http://localhost:3000/events.xml

--> 200 (3425b 0.04s)

GET http://localhost:3000/events/1.xml

--> 200 (378b 0.03s)

PUT http://localhost:3000/events/1.xml

--> 200 (1b 0.08s)

POST http://localhost:3000/events.xml

--> 201 (405b 0.03s)

DELETE http://localhost:3000/events/12.xml

--> 200 (1b 0.02s)

REST makes for good gravy, but it’s not the main course. We have a full

API for creating, reading, updating, and deleting events via the browser

or a remote client program. And we have conventions—a consistent set

of URLs that map to a consistent set of actions. In general, this makes

deciding where things go a lot easier. In particular, we no longer have

controllers that are dumping grounds for spurious actions.

Discussion

It’s important to note that REST (map.resources in particular) and respond_to

blocks are orthogonal. You can use respond_to without resources, and

vice versa.

While Active Resource ships with Rails and uses some of its support

classes, it’s not necessarily Rails specific. You can use it to reach out

to any server supporting the URL, HTTP verb, and XML format conven-

tions of Rails.

Also See

The map.resources method only generates routes for the seven CRUD

actions. This begs the question: How do I call actions outside of this set?

Recipe 2, Adding Your Own REST Actions (Or Not), on the following page

shows how to customize the routes for application-specific concerns.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/services/event.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=19

Recipe 2

Adding Your Own REST

Actions (Or Not)

Problem

The RESTful style baked into Rails is starting to make some sense, and

the conventions are working well for some things, but you just can’t

get your head wrapped around special cases. The devil’s in the details,

as they say. So when the seven CRUD actions of a resource seem to

fall short, how (and more important where) do you deal with the edge

cases?

Solution

Before we get started, I’ll give you the bad news: There are no hard

and fast rules we can apply in this recipe. This is largely a matter of

software design, and design is all about trade-offs. That is to say, the

real world is a wonderfully messy place and modeling it with straight-

line boxes and arrows is anything but exact. REST, on the other hand,

is an idyllic world. Our job is to find the common ground for the good

of our application and its users.

Let’s walk through three examples where REST commonly trips us up:

sorting, searching, and nested resources. Then we’ll step back and see

if we can tease out some guidelines.

First, we have a collection of event resources that we’d like to sort by

name or start time. To do that we could define a new sort action, for

example, and punch a hole in the routes for it. But presenting a sorted

list of events is no different than what an index action does. So all we

need to do here is let our existing index action handle sorting:

Download Rest/app/controllers/events_controller.rb

def index

sort_by = (params[:order] == 'starts_at' ? 'starts_at desc' : 'name')

@events = Event.find(:all, :order => sort_by)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @events }

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/events_controller.rb

2. ADDING YOUR OWN REST ACTIONS (OR NOT) 21

end

end

Then to sort events, we send in this URL, for example:

http://localhost:3000/events?order=starts_at

Indeed, that URL is a resource in its own right: it uniquely identifies a

collection of events.

Next we’d like to search for events given a search term, such as the

event name. Similar to sorting, we could send a term parameter in to

the index method. However, our search implementation has slightly dif-

ferent concerns. For example, we might want to render search results

with rankings, a reminder of the term we used, and a “Did you really

mean...” tip. Hrm, search doesn’t fit as neatly into the index box.

In this particular case, let’s create a new search action in our EventsCon-

troller:

Download Rest/app/controllers/events_controller.rb

def search

@term = params[:term]

@events = Event.search(@term)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @events }

end

end

The routes generated by map.resources :events don’t know about that

action. So we need to add an extension to the map.resources call in con-

fig/routes.rb:

map.resources :events, :collection => { :search => :get }

Now we have a route to the search action, accessible via a GET request.

It applies all the events—the collection of resources. To get there we

navigate to:

http://localhost:3000/events/search?term=rubyconf

Again, this is a totally RESTful URL. You can think of search as a sub-

resource of the events resource.

Finally, we’d like people to be able to register for events. At first blush,

it appears we need a register action on the EventsController. To do that

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://localhost:3000/events?order=starts_at
http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/events_controller.rb
http://localhost:3000/events/search?term=rubyconf
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=21

2. ADDING YOUR OWN REST ACTIONS (OR NOT) 22

though means we miss a design opportunity. We’re really missing a key

resource here: registrations.

So rather than polluting the EventsController, let’s just make registrations

a nested-resource of events by revising our routes.rb file:

map.resources :events,

:collection => { :search => :get },

:has_many => :registrations

Then we need some way to register for an event, so we’ll add this to an

event page that has a event variable already set up:

<%= button_to "Register", event_registrations_path(:event_id => event) %>

This will post to the create action in our RegistrationsController, which

might then look something like this, for example:

Download Rest/app/controllers/registrations_controller.rb

class RegistrationsController < ApplicationController

def create

@event = Event.find(params[:event_id])

if @current_user.register_for(@event)

flash[:notice] = "Thanks for registering!"

else

flash[:notice] = "You're already registered for that event!"

end

@events = @current_user.events

end

end

OK, let’s step back. In the first example we extended an existing action

and in the second example we extended the routes. So, should search-

ing always be a new action? Well, it depends. If the search templates and

everything else are similar enough to index, then it’s perfectly accept-

able (in the eyes of REST) to implement searching as a variant of the

index action. If searching is fundamentally different, then it may well

deserve its own action. Finally, in the third example, looking at our

application through the REST lens unveiled a missing resource. So if

there’s a lesson here it’s that resources serve as expert guides, if only

we listen to them.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/registrations_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=22

Recipe 3

Authenticating REST Clients

Problem

You’re developing a RESTful application. Perhaps it’s an event manage-

ment system with user accounts. Naturally, you need to protect access

to resources of the site with a login and password. You’ve done this

before, you know, back in the old days. But this is a new day, so how

do you authenticate users in a RESTful way?

Solution

Let’s assume we already have a User model. To check if a user exists for

a given login and password, we can call:

User.authenticate(login, password)

Given that, we need a form to accept the login and password. And of

course we need a couple controller actions to pop the form and authen-

ticate the user. Now, we could slap those actions in any old controller,

but REST is always asking the question: What’s the resource?

The thing we’re really trying to manage when dealing with web-based

authentication is an HTTP session. It’s the resource that knows whether

a user is currently logged in or not.

So let’s start by adding the RESTful routes for a session to our con-

fig/routes.rb file:

map.resource :session

Note that we’re using map.resource (singular) here, not plural as is usu-

ally the case. For a given user, we only need one session. The singular

form generates routes and helpers using the singular name (session) as

we’ll see in minute.

Next we need to create a SessionsController for the session. (Resource

controllers are always plural.) The new action pops the form, and the

create action stashes the user’s id in the session if the user logs in

successfully:

Download Rest/app/controllers/sessions_controller.rb

def new

end

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/sessions_controller.rb

3. AUTHENTICATING REST CLIENTS 24

def create

user = User.authenticate(params[:login], params[:password])

if user

session[:user_id] = user.id

flash[:notice] = "Welcome back, #{user.login}!"

redirect_to events_url

else

flash[:error] = "Invalid email/password combination!"

render :action => 'new'

end

end

Then when the user logs out, we delete their session in the destroy

action:

Download Rest/app/controllers/sessions_controller.rb

def destroy

reset_session

flash[:notice] = "You've been logged out."

redirect_to new_session_url

end

This is all pretty standard authentication stuff, with the exception of

being able to call the new_session_url to generate the URL back to the

new action. To invoke these actions, we’ll of course need some links:

<%= link_to 'Login', new_session_path %>

<%= link_to 'Logout', session_path, :method => :delete %>

Next we need a login form for the new action:

Download Rest/app/views/sessions/new.html.erb

<% form_tag session_path do -%>

<fieldset>

<p>

<label for="login" class="required">Login</label>

<%= text_field_tag :login, params[:login] %>

</p>

<p>

<label for="password" class="required">Password</label>

<%= password_field_tag :password, params[:password] %>

</p>

<p>

<%= submit_tag 'Log in' %>

</p>

</fieldset>

<% end -%>

This is a standard form, but notice that it uses the session_path helper

in the form_tag. In this case the form will issue a POST to /session. And

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/app/views/sessions/new.html.erb
/session
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=24

3. AUTHENTICATING REST CLIENTS 25

according to the routes that were added by map.resource, that URL and

verb pair always maps to the create action.3

At this point we have the session resource all ready to go, and a way for

users to log in and out. But we make the rules around here about when

a login is required. If there’s an id in session[:user_id], we know the user

is logged in. If they aren’t logged in and they try accessing our site, we

need to issue a redirect to the login form. Easy enough. We just add a

before_filter in the ApplicationController:

Download Rest/app/controllers/application.rb

before_filter :login_required

Except we don’t want to force a login when indeed the user is trying to

log in (makes for angry users), so we’ll just skip the before filter in the

SessionsController:

Download Rest/app/controllers/sessions_controller.rb

skip_before_filter :login_required

Then we need to write the login_required method called by the before_filter:

Download Rest/app/controllers/application.rb

def login_required

unless session[:user_id]

flash[:notice] = "Please log in"

redirect_to new_session_url

end

end

OK, that gives us a way to log in via a browser in a RESTful way, and

have the app remember that we’re logged in. So far so good. But that’s

just one half of the equation.

Remember that our resources can also represent themselves as XML,

for example. (That’s what the respond_to blocks in our controllers are all

about.) And let’s say we have an Active Resource client that uses XML

to chat with the resources exposed by our application. In this case there

is no browser. So how do we authenticate this client program?

The web already has the answer: HTTP basic authentication. An encoded

login and password are slipped in the HTTP headers, and away we go.

So in our Active Resource client, we include the login and password as

part of the URL pointing to where the resource lives:

3. Run rake routes for a peek inside.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/application.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/application.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=25

3. AUTHENTICATING REST CLIENTS 26

class Event < ActiveResource::Base

self.site = "https://mike:secret@localhost:3000"

end

Note that if we were to use http://, the encoded login and password will

travel across the ’net in plaintext which any hacker worth his salt can

decode over lunch, so don’t forget to use https://! And while we’re talking

about security, let’s go ahead and use the HighLine4 library to prompt

for a login and password, rather than hard-coding them in our client:

Download Rest/services/event_with_auth.rb

require 'rubygems'

require 'highline/import'

def prompt(prompt, mask=true)

ask(prompt) { |q| q.echo = mask}

end

def login

prompt('Login: ')

end

def password

prompt('Password: ', '*')

end

class Event < ActiveResource::Base

self.site = "https://#{login}:#{password}@localhost:3000"

end

Neat and tidy. We almost have all the ingredients mixed, I promise.

We just need to fix up our server to handle HTTP basic authentication.

Remember, our login_required filter just checks for a user id in the ses-

sion. That won’t work for our Active Resource client because it’s sending

credentials in HTTP headers (and it doesn’t have cookies to store ses-

sion data in). So as the final step we need to spiff up the login_required

filter method to handle both types of clients:

Download Rest/app/controllers/application.rb

def login_required

respond_to do |format|

format.html do

if session[:user_id]

@current_user = User.find(session[:user_id])

else

flash[:notice] = "Please log in"

4. http://rubyforge.org/projects/highline/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Rest/services/event_with_auth.rb
http://media.pragprog.com/titles/fr_arr/code/Rest/app/controllers/application.rb
http://rubyforge.org/projects/highline/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=26

3. AUTHENTICATING REST CLIENTS 27

redirect_to new_session_url

end

end

format.xml do

user = authenticate_with_http_basic do |login, password|

User.authenticate(login, password)

end

if user

@current_user = user

else

request_http_basic_authentication

end

end

end

end

There’s our old friend respond_to again. If the client wants HTML (it’s the

browser knocking), then we check the session. If the client wants XML

(hello, Active Resource client), then we call the authenticate_with_http_basic

method. It decodes the HTTP headers for us, and passes the login and

password as block parameters. Then we just try to authenticate the

user. If we find a matching user, we’re good to go. Otherwise, we send a

request back to the client to retry using the request_http_basic_authentication

method.

Whew! That involved quite a few steps. Here’s the good news: We now

have all the authentication we need for all RESTful client types.

Discussion

Although several authentication libraries are available as plugins and

generators, simple authentication is so easy to roll by hand that it’s

often not worth carrying around the extra baggage of a third-party plu-

gin. Most importantly, by writing your own you will understand how it

works. That way, when it comes time to debug what’s going on, you’ll

be in good shape to get it done quickly.

Having said that, if you want an example of a slightly more complex

authentication approach, check out Rick Olson’s restful_authentication

plugin.5 In addition to creating a RESTful session environment, it can

also generate everything you need to get started with users including

an activation step.

5. http://svn.techno-weenie.net/projects/plugins/restful_authentication/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://svn.techno-weenie.net/projects/plugins/restful_authentication/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=27

3. AUTHENTICATING REST CLIENTS 28

Also See

• See Recipe 1, Putting A Resource On The Web, on page 15 for an

introduction to REST.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=28

Recipe 4

Custom Response Formats

By Patrick Reagan (http://www.viget.com)

Patrick is a recovering PHP user who finally realized the immense power that Rails brings to

the web development space. As the Director of Application Development for Viget Labs,

he’s been helping lead the charge in adopting Rails as the framework of choice when

building applications for their startup clients.

Problem

Rails knows about several pre-defined formats for responding to requests:

HTML, JavaScript, XML, RSS, and so on. But how do you create your

own formats?

Solution

Say we want to build an app to download or stream MP3 files we find

online. Let’s start by making it a RESTful application using scaffolding:

$ script/generate scaffold mp3 title:string url:string length:string

$ rake db:migrate

So now that we can manage MP3 resources, let’s drop a few files in via

the console:

$ ruby script/console

>> Mp3.create(:title => 'RoR Podcast: Chad Fowler',

:url => 'http://paranode.com/~topfunky/audio/2005/Chad-Fowler.mp3',

:length => "2747625"

=> #<Mp3 id: 1, ...>

>> Mp3.create(:title => 'RoR Podcast: Dave Thomas and Mike Clark',

:url =>

'http://paranode.com/~topfunky/audio/2006/rails-032-thomas-and-clark.mp3',

:length => "26664043")

=> #<Mp3 id: 2, ...>

Now let’s turn our attention to the Mp3sController. Currently the show

action only knows how to render our MP3 information as HTML or XML:

def show

@mp3 = Mp3.find(params[:id])

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @mp3 }

end

end

Prepared exclusively for Jeanne McDade

http://www.viget.com

4. CUSTOM RESPONSE FORMATS 30

We also want to serve up playable audio when the show action is invoked.

To do that, we need to register our MIME types in the config/initializers/mime_types.rb

file that’s included by default in all new applications:

Download RespondToFormats/config/initializers/mime_types.rb

Mime::Type.register 'audio/mpeg', :mp3

Mime::Type.register 'audio/mpegurl', :m3u

So, when the browser requests the .mp3 or .m3u formats, our applica-

tion needs to set the Content-Type header to the corresponding MIME

type when it sends the response. We’ll rely on the browser to handle

the MIME type in the response properly.

Now, back in our controller we can add our formats to the show action’s

respond_to block:

Download RespondToFormats/app/controllers/mp3s_controller.rb

def show

@mp3 = Mp3.find(params[:id])

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @mp3 }

format.mp3 { redirect_to @mp3.url }

format.m3u { render :text => @mp3.url }

end

end

Here’s what happens: When a user requests the .mp3 format for down-

load, we redirect to the MP3 file’s URL. If the user requests the .m3u

format to stream the MP3, we respond with a text file that includes

a pointer to an actual MP3 resource. Most modern audio applications

respect the M3U format and will “stream” the referenced resource by

both downloading and playing the MP3 simultaneously.6

Let’s give this a shot. Rails includes a default route to let us set the

format in the URL. To download the first MP3, we use:

http://localhost:3000/mp3s/1.mp3

And to stream the first MP3 into our audio player, we use:

http://localhost:3000/mp3s/1.m3u

To add the appropriate links to our views, we can use named routes:

6. For me, this starts up iTunes and begins streaming the file. For Windows users,

this action will typically open Windows Media Player, Winamp, or another configured

application.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/RespondToFormats/config/initializers/mime_types.rb
http://media.pragprog.com/titles/fr_arr/code/RespondToFormats/app/controllers/mp3s_controller.rb
http://localhost:3000/mp3s/1.mp3
http://localhost:3000/mp3s/1.m3u
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=30

4. CUSTOM RESPONSE FORMATS 31

Download RespondToFormats/app/views/mp3s/show.html.erb

<p>

<%= h @mp3.title %>

(<%= link_to 'Download', formatted_mp3_url(@mp3, :mp3) %> |

<%= link_to 'Stream', formatted_mp3_url(@mp3, :m3u) %>)

</p>

This is a good start, but let’s take it a step further. Right now we’re

streaming files one-by-one. That’s not always convenient. So let’s also

allow a user to queue multiple MP3 streams using the playlist (PLS) file

format. We’ll go through the same steps to register the new MIME type:

Download RespondToFormats/config/initializers/mime_types.rb

Mime::Type.register 'audio/x-scpls', :pls

Because an audio playlist is essentially a listing of audio files, we serve

it up through the index action:

Download RespondToFormats/app/controllers/mp3s_controller.rb

def index

@mp3s = Mp3.find(:all)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @mp3s }

format.pls { render :layout => false } # index.pls.erb

end

end

All we need to do now is add the corresponding template to render the

playlist in the proper format:

Download RespondToFormats/app/views/mp3s/index.pls.erb

[playlist]

NumberOfEntries=<%= @mp3s.length %>

<% @mp3s.each_with_index do |mp3, index| -%>

File<%= index + 1 %>=<%= h mp3.url %>

Title<%= index + 1 %>=<%= h mp3.title %>

Length<%= index + 1 %>=<%= h mp3.length %>

<% end -%>

Version=2

The naming here is important. The format we’re sending back is pls

and we’re using the ERB templating system to render the format. So

the template file is called index.pls.erb, and it’s only rendered if the pls

format is requested.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/RespondToFormats/app/views/mp3s/show.html.erb
http://media.pragprog.com/titles/fr_arr/code/RespondToFormats/config/initializers/mime_types.rb
http://media.pragprog.com/titles/fr_arr/code/RespondToFormats/app/controllers/mp3s_controller.rb
http://media.pragprog.com/titles/fr_arr/code/RespondToFormats/app/views/mp3s/index.pls.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=31

4. CUSTOM RESPONSE FORMATS 32

With this plumbed in, a user can queue up both files we’ve added to

our application using this URL:

http://localhost:3000/mp3s.pls

Discussion

These custom formats aren’t limited to audio—you can add your own

formats to serve up calendar files or anything that has a Content-Type

recognized by a client application.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://localhost:3000/mp3s.pls
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=32

Recipe 5

Catch All 404s

Problem

You want a record of all URLs that trigger 404s in your application,

perhaps to plug holes in your routing scheme or identify legacy URLs

you forgot to handle.

Solution

Let’s follow a stray request through our application, writing code as we

go. It starts with an incoming URL that doesn’t map to any action in

our application:

http://railsrecipes.com/please/catch/me

Ah, poor thing. Let’s catch it by creating this route:

Download buffet/config/routes.rb

map.connect '*path', :controller => 'four_oh_fours'

Two things make this a catch-all route: it’s the last route in the con-

fig/routes.rb file and it uses an asterisk to sponge up the incoming URL

path parts. So for the example URL above, the path parameter would

end up containing the array:

["please", "catch", "me"]

Now we need the FourOhFoursController to handle all the stray requests:

Download buffet/app/controllers/four_oh_fours_controller.rb

class FourOhFoursController < ApplicationController

def index

FourOhFour.add_request(request.host,

request.path,

request.env['HTTP_REFERER'] || '')

respond_to do |format|

format.html { render :file => "#{RAILS_ROOT}/public/404.html",

:status => "404 Not Found" }

format.all { render :nothing => true,

:status => "404 Not Found" }

end

end

Prepared exclusively for Jeanne McDade

http://railsrecipes.com/please/catch/me
http://media.pragprog.com/titles/fr_arr/code/buffet/config/routes.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/app/controllers/four_oh_fours_controller.rb

5. CATCH ALL 404S 34

end

There’s not much to this controller. We just strip out a few interesting

bits of the incoming request: the hostname (railsrecipes.com), the path

(/please/catch/me), and the URL of the page that triggered this request

if it exists. Before rending an appropriate 404 response back to the

client, the FourOhFour model squirrels the request information away in

the database so we have a permanent record:

Download buffet/app/models/four_oh_four.rb

class FourOhFour < ActiveRecord::Base

def self.add_request(host, path, referer)

request = find_or_create_by_host_and_path_and_referer(host, path, referer)

request.count += 1

request.save

end

end

That just leaves us with creating the migration file, with some indices:

Download buffet/db/migrate/003_create_four_oh_fours.rb

class CreateFourOhFours < ActiveRecord::Migration

def self.up

create_table :four_oh_fours do |t|

t.string :host, :path, :referer

t.integer :count, :default => 0

t.timestamps

end

add_index :four_oh_fours, [:host, :path, :referer], :unique => true

add_index :four_oh_fours, [:path]

end

def self.down

drop_table :four_oh_fours

end

end

Then just create a listing of all 404s somewhere on the admin side of

your app, and you’ve got yourself a convenient 404 report.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/four_oh_four.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/db/migrate/003_create_four_oh_fours.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=34

5. CATCH ALL 404S 35

Discussion

But wait, there’s more! You could also use the catch-all route to actually

handle requests that don’t map to a specific action. Say, for example,

you have a database table that stores “pages”: a URL path and the con-

tent to display when that URL is accessed. (You might even be calling

this a content management system.) By modifying the controller just

slightly, the catch-all route gives users access to all your content:

def index

@page = CmsPage.find_by_path(params[:path])

if @page

render :inline => @page.body

else

treat it as a 404

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=35

Part II

Search Recipes

36
Prepared exclusively for Jeanne McDade

Snack Recipe 6

Improve SEO with Dynamic

Meta Tags

Thanks to Dan Benjamin for the idea for this recipe.

Setting the HTML meta tags consistently across your app helps search

engines guide people to your site. A good start is to put relevant titles,

descriptions, and keywords on each page for the search engines to snarf

up. It doesn’t guarantee better rankings, but it sure can’t hurt to use

the HTML markup the way it was intended.

With a few instance variables and simple helpers, we can quickly add

meta-tag consistency in the top of our application layout, like so:

Download ImproveSEOWithDynamicKeywords/app/views/layouts/application.html.erb

<%= page_title %>

<%= meta "description", meta_description %>

<%= meta "keywords", meta_keywords %>

Let’s visit each helper method in turn.

Search engines love a good title tag, and it helps people using your site,

too. The page_title helper creates an appropriate title for each page:

Download ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb

def page_title

title = @page_title ? "| #{@page_title}" : ''

%(<title>Bookstore #{title}</title>)

end

Now we just need to set the @page_title instance variable when we don’t

want the default page title. It turns out that a layout template has

access to all the instance variables that are set in the templates and

views that were used to render the page. So, if a page is showing a

book, in the view we set @page_title to the book’s title:

Download ImproveSEOWithDynamicKeywords/app/views/books/show.html.erb

<% @page_title = @book.title %>

Next come the meta tags. Let’s start with a little helper that takes the

meta-tag name and its content, then generate the actual HTML:

Download ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb

def meta(name, content)

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ImproveSEOWithDynamicKeywords/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/fr_arr/code/ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_arr/code/ImproveSEOWithDynamicKeywords/app/views/books/show.html.erb
http://media.pragprog.com/titles/fr_arr/code/ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb

6. IMPROVE SEO WITH DYNAMIC META TAGS 38

%(<meta name="#{name}" content="#{content} />")

end

That lets us write this in our layout:

<%= meta "description", "A Book" %>

Except if the current page is showing a book (we have an @book instance

variable set), then the description should include the title and author.

So next we write a helper just to generate the description meta-tag con-

tent:

Download ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb

def meta_description

if @book and !@book.new_record?

"Information about #{@book.title} by #{@book.author}."

else

"Books for programmers by programmers"

end

end

Then we can mix the two together to get this:

<%= meta "description", meta_description %>

Last, but by no means least, let’s go for broke by filling in the keywords

meta tag with some of the book’s attributes:

Download ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb

def meta_keywords

if @book and !@book.new_record?

[@book.title,

@book.author,

"#{@book.edition.ordinalize} Edition",

@book.isbn,

@book.pubdate.to_s(:month_year)].join(',')

else

%w(books programmers).join(',')

end

end

Then back in the layout file it looks like this:

<%= meta "keywords", meta_keywords %>

Now we can rest easy knowing that all the book pages have meaningful

meta tags. Here’s an example:

<title>Bookstore | Agile Web Development with Rails</title>

<meta name="description" content="Information about Agile Web Development

with Rails by Dave Thomas." />

<meta name="keywords" content="Agile Web Development with Rails,

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_arr/code/ImproveSEOWithDynamicKeywords/app/helpers/application_helper.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=38

6. IMPROVE SEO WITH DYNAMIC META TAGS 39

Dave Thomas,2nd Edition,

978-0-9776166-3-3,Nov 2007" />

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=39

Recipe 7

Full-Text Search with Ferret

By Gregg Pollack (http://www.railsenvy.com)

This recipe is a blend of ideas, code, and text contributed independently by Mike Subelsky

(http://www.subelsky.com/) and Gregg Pollack. I mixed them together to bring you a dish

using the freshest ingredients.

Problem

At some point you’re bound to need a search field. While single column

searches over a few thousand records is easy, things slow down when

you start searching millions of records across multiple database tables

and columns. All the big boys use optimized search applications, so

why not you?

Ingredients

• The ferret gem:

$ gem install ferret

• The acts_as_ferret plugin:

$ script/plugin install script/plugin install ←֓

svn://projects.jkraemer.net/acts_as_ferret/tags/stable

Solution

Admittedly there’s more than one way to skin this cat, but Ferret7 is a

lightweight, and yet high performance, text search engine derived from

the well-known Java Lucene project (which is what all the Java big boys

use). And the acts_as_ferret plugin gives us a simple interface so we can

start creating complex search indexes before the database melts.

Let’s say we’re running a job hunting site. People like to search through

job postings, if only to remind themselves that they know more acronyms

than the recruiters who post the jobs. Here’s what our database schema

looks like:

Download ActsAsFerret/db/migrate/001_create_job_postings.rb

create_table :job_postings do |t|

t.string :name

7. http://ferret.davebalmain.com/trac

Prepared exclusively for Jeanne McDade

http://www.railsenvy.com
http://media.pragprog.com/titles/fr_arr/code/ActsAsFerret/db/migrate/001_create_job_postings.rb
http://ferret.davebalmain.com/trac

7. FULL-TEXT SEARCH WITH FERRET 41

t.text :requirements, :description

end

The first thing we need to do is mix the acts_as_ferret goodies into our

JobPosting model:

Download ActsAsFerret/app/models/job_posting.rb

class JobPosting < ActiveRecord::Base

acts_as_ferret :fields => [:name, :description, :requirements],

:remote => true

end

Ferret can rapidly search through data because it builds optimized

indexes on all search terms. If we don’t specify which fields we’d like

Ferret to index, it assumes we want to index all fields. This can be

expensive, so instead we tell Ferret exactly which fields in our model

we want to index (and do searches on).8

Take special note of the :remote => true option. If you leave that option

out in production, you’re playing with fire. Ferret stores its indices on

the file system where the server is running, subdivided by environment.

(By default this is RAILS_ROOT/index/development/job_posting, for exam-

ple.) If you have multiple Rails processes running index operations on

that directory, you’ll quickly wind up with a corrupted index. Using

:remote => true causes your model to connect to a remote Ferret server

for index-friendly search operations. Let’s set that up next.

The acts_as_ferret plugin automatically rolled out a configuration file for

the remote Ferret server in config/ferret_server.yml:

production:

host: ferret.yourdomain.com

port: 9010

pid_file: log/ferret.pid

development:

host: localhost

port: 9010

pid_file: log/ferret.pid

test:

host: localhost

port: 9009

pid_file: log/ferret.pid

8. You generally only want to index fields that have varying text content. It doesn’t make

sense to index fields that could be searched with less-expensive comparison searches

that can already be done via Active Record’s find method.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ActsAsFerret/app/models/job_posting.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=41

7. FULL-TEXT SEARCH WITH FERRET 42

By default the development and test sections are commented out. If

acts_as_ferret can’t find a configuration for its current environment, then

it just won’t use a remote server. We don’t necessary need a remote

server unless we’re in production, but it’s good to test everything out

locally anyway. So go ahead and uncomment all the environments. You

may want to change the name of the pid_file for the three environments

so that you can run servers for each environment simultaneously.

Then, to start the Ferret server, we just run:

$ script/ferret_server start

This will launch a distributed Ruby (dRuby) server that runs as a sep-

arate process on the configured port. And if all goes well, we see:

starting ferret server...

OK, let’s run some searches in the console. First we’ll create a couple

of job postings:

$ ruby script/console

>> JobPosting.create(:name => "Rails Hacker",

:description => "We have a foosball table",

:requirements => "At least 10 years of Rails experience")

>> JobPosting.create(:name => "Ruby Hacker",

:description => "We've seen the light",

:requirements => "Can you explain what a symbol is?")

We have a couple search methods at our fingertips, the first of which is

find_id_by_contents:

>> total, jobs = JobPosting.find_id_by_contents('hacker')

=> [2, [{:score=>0.029847851023078, :data=>{}, :model=>"JobPosting", :id=>"1"},

{:score=>0.029847851023078, :data=>{}, :model=>"JobPosting", :id=>"2"}]]

>> total

=> 2

So we have two matches in the total variable, and in the jobs array we

get the results with the ids and search scores for each of them. Using

find_id_by_contents is good for times when we don’t want to fetch all the

matching objects from our database, but instead we just want to get

their IDs and relevance scores. Then we could selectively pick the best

results and how many we’ll display. But let’s say we want to go ahead

and display the job posting information. This is where find_by_contents

comes in:

>> results = JobPosting.find_by_contents('hacker')

=> #<ActsAsFerret::SearchResults:0x193ab24 @total_pages=1,

@results=[

#<JobPosting id: 1, name: "Rails Hacker",

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=42

7. FULL-TEXT SEARCH WITH FERRET 43

description: "We have a foosball table",

requirements: "Must have at least 10 years of Rails experience">,

#<JobPosting id: 2, name: "Ruby Hacker",

description: "We've seen the light",

requirements: "Can you explain what a symbol is?">],

@per_page=2, @current_page=nil, @total_hits=2>

The neat thing about this is the way it slurps in our JobPosting objects.

Calling find_by_contents turns around behind the scenes and calls find_id_by_contents

to get all the ids from the search server. Then it issues one database

query to select all job postings in that set of ids.

That gives us everything we need to run efficient searches. All that’s left

is putting it on the web. That’s the easy part. Imagine we have a search

action like this:

Download ActsAsFerret/app/controllers/job_postings_controller.rb

def search

@results = JobPosting.find_by_contents(params[:term]).

sort_by(&:ferret_rank)

end

Here we’re sorting by ferret_rank, which refers to the sort order Ferret

recommends for the hits, based on the relevance score. So then we

could render our job postings in some meaningful order and show the

score:

Download ActsAsFerret/app/views/job_postings/search.html.erb

<h1><%= pluralize(@results.size, 'result') %></h1>

<% for job in @results %>

<%= job.ferret_score %>: <%= link_to job.name, job %>

<% end %>

Finally, to stop the remote Ferret server, we use:

$ script/ferret_server stop

Now, back to searching for those humorous job postings...

Discussion

The find_id_by_contents and find_by_contents methods take two optional

parameters after the query string which can greatly extend the power

of your queries: limit and offset. These should look familiar, and feel just

like your normal ActiveRecord find searches.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ActsAsFerret/app/controllers/job_postings_controller.rb
http://media.pragprog.com/titles/fr_arr/code/ActsAsFerret/app/views/job_postings/search.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=43

7. FULL-TEXT SEARCH WITH FERRET 44

Mike says. . .

I Once Had a Ferret

That’s not entirely true, but I once needed a ferret. When we
were building the Pragmatic Store we kept delaying the search
implementation. It couldn’t take long, right? Then a couple
weeks before the launch, we decided we’d better spike it.
So we opened up the contributions for this Ferret recipe and
had it all working in a matter of minutes. We basically haven’t
touched it since. The critical ingredient to running Ferret in pro-
duction is the use of the remote Ferret server.

Other acts_as_ferret options allow you to search multiple models at once

and share indices among models.

Also See

• The acts_as_searchable plugin adds full-text searching capabilities

based on Hyper Estraier.

• The acts_as_sphinx plugin adds full-text searching to Sphinx.

• The acts_as_tsearch plugin gives you access to Postgres’ T-search

native text indexing extension.

• MySQL has full-text indexing, as long as you use MyISAM tables.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=44

Recipe 8

Active Record on Solr

By Erik Hatcher (http://code4lib.org/erikhatcher)

Erik, besides lamely teasing with rucene and ruby-lucene for years, co-authored Lucene in

Action [?]. He speaks passionately around the world on varying technical topics of interest,

most recently on this very combination of Solr and Ruby at RailsConf and rubyconf 2007.

Erik has worked at the University of Virginia’s Applied Research in Patacriticism to shine Solr’s

light onto the 19th century world of art and poetry, and now works full-time on Lucene and

Solr technologies for a startup company.

Problem

Your content needs to be full-text searchable (not in the puny SQL LIKE

%whatever% way), and you want to allow what’s called faceted browsing

to help users narrow down results into meaningful categories. At the

same time, you want Active Record creates, updates, and deletes to

“just work” with the least amount of work.

Ingredients

• The Java Runtime Environment (JRE) 1.5

• The acts_as_solr plugin:

$ script/plugin install ←֓

svn://svn.railsfreaks.com/projects/acts_as_solr/trunk

Solution

We’re going to pull out the big cooking utensils in this recipe, because

we want a solution that’s fast and scalable (and we set the bar unrea-

sonably high by calling SQL “puny” in the problem statement). Solr9

is an open source search server based on the tried and true Lucene10

search library. Solr was created for CNET and open sourced to an active

community—it’s gained mindshare by the bulk of the expert informa-

tion retrieval folks in the world. Solr runs in a Java servlet container,

but don’t worry about that, the acts_as_solr plugin comes with one to get

us going in a jiffy.

9. http://lucene.apache.org/solr/

10. http://lucene.apache.org

Prepared exclusively for Jeanne McDade

http://code4lib.org/erikhatcher
http://lucene.apache.org/solr/
http://lucene.apache.org

8. ACTIVE RECORD ON SOLR 46

Great, so let’s search some books, shall we? We’ll have books and

categories in a has_and_belongs_to_many embrace. The only interesting

migration file is for the books table. Here’s what we can search on:

Download ActsAsSolr/db/migrate/001_create_books.rb

class CreateBooks < ActiveRecord::Migration

def self.up

create_table :books do |t|

t.string :title, :asin, :author, :publisher

t.date :published_date

end

end

def self.down

drop_table :books

end

end

With the acts_as_solr plugin installed, we can go ahead and add Solr

support to our Book model by (you guessed it) adding a acts_as_solr dec-

laration:

Download ActsAsSolr/app/models/book.rb

class Book < ActiveRecord::Base

acts_as_solr

has_and_belongs_to_many :categories

end

Now it’s time to fire up the Solr server. When we installed the acts_as_solr

plugin, it added a handful of Rake tasks to manage the server. Here it

goes:

$ rake solr:start

The plugin also dropped a config/solr.yml file that tells Solr which URL

and port to run on. Similarly, it tells our Book model how to summon

the mighty search server. The default development port is 8982; it’s

8983 for production. So we can walk right up to Solr as a test:

http://localhost:8982/solr/

That wasn’t so bad. Now we’re ready to add a book and full-text search

it. The easiest way to experiment with searching is using the console.

We’ll start by adding a book and its categories:

$ ruby script/console

>> book = Book.new(:title => "Solr Recipes",

:published_date => Date.today,

:publisher => "See The Light Publishing")

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ActsAsSolr/db/migrate/001_create_books.rb
http://media.pragprog.com/titles/fr_arr/code/ActsAsSolr/app/models/book.rb
http://localhost:8982/solr/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=46

8. ACTIVE RECORD ON SOLR 47

>> book.categories << Category.new(:name => "Yummy")

>> book.categories << Category.new(:name => "Information Retrieval")

>> book.save

Then, still in the console, we can use the Book.find_by_solr method to find

all the books with “recipe” in any column:

>> results = Book.find_by_solr("recipe")

=> #<ActsAsSolr::SearchResults:0x2552ea8 @solr_data=

{:total=>1, :docs=>[#<Book:0x2552db8 @attributes={"title"=>"Solr

Recipes", "author"=>nil, "asin"=>nil, "id"=>"3", "publisher"=>nil,

"published_date"=>nil}>], :max_score=>0.73360884}>

>> results.docs

=> [#<Book id: 1, title: "Solr Recipes", asin: nil, author: nil,

publisher: "See The Light Publishing", published_date: "2007-12-04">]

As expected, one book matched. So far so good. Now let’s say we want

the results to be grouped into buckets, or facets. We just add a facet for

the publisher field, for example:

class Book < ActiveRecord::Base

acts_as_solr :facets => [:publisher]

has_and_belongs_to_many :categories

end

Changing the acts_as_solr configuration may require reindexing, which

we can do using the rebuild_solr_index method for the model that has

changed. We can do that from the console, too:

>> reload!

>> Book.rebuild_solr_index

Then we run the same query, but this time telling find_by_solr that we’re

interested in how many results are in the publisher facet:

>> results = Book.find_by_solr("recipe", :facets => {:fields => [:publisher]})

=> #<ActsAsSolr::SearchResults:0x1a46950...>

>> results.total

=> 1

>> results.facets

=> {"facet_queries"=>{},

"facet_fields"=>{"publisher_facet"=>{"See The Light Publishing"=>1}}}

We searched for “recipe”. Out of all documents that match that con-

straint, how many are from each publisher? The facets method lets us

see how many results fall into various buckets (or facets). This can help

provide a richer browsing experience for users—the kind of drill down

through categories that you might see on a shopping site. We could, for

example, use Solr’s filter query capability to further constrain results

by selected facets.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=47

8. ACTIVE RECORD ON SOLR 48

Adding the book categories and published years as facets requires a

few magic incantations, but we’re feeling lucky. We need to change our

Book model to this:

class Book < ActiveRecord::Base

acts_as_solr :facets => [:publisher, :category, :year],

:additional_fields => [:category, :year]

has_and_belongs_to_many :categories

def category

categories.collect {|c| c.name }

end

def year

published_date ? published_date.year : nil

end

end

We’ve added a couple accessor methods—category and year—to bundle

up lower-level data. The :additional_fields option gets acts_as_solr to pull

in these “synthetic” fields. We also specify those same field names as

facet fields, which causes them to be named and treated different by

Solr.

Unless otherwise specified, all fields are assumed to be text fields (*_t in

the Solr schema). Fields specified in the :facets array are named *_facet

in the Solr documents. The acts_as_solr plugin expends great effort to

map field names automatically between Active Record and Solr, but the

Solr facet field names leak through acts_as_solr, as shown with the

_facet suffixes.

Once again we need to run Book.rebuild_solr_index, and now we can peek

at the new facets in the console:

>> reload!

>> Book.rebuild_solr_index

>> results = Book.find_by_solr("solr",

:facets => {:fields => [:category, :year]})

=> #<ActsAsSolr::SearchResults:0x17b883c...>

>> results.facets

=> {"facet_queries"=>{}, "facet_fields"=> {

"category_facet"=>{"Information Retrieval"=>1, "Yummy"=>1},

"year_facet"=>{"2007"=>1}}}

All that’s left is putting it on the web. That’s the easy part. Imagine we

have a search action like this:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=48

8. ACTIVE RECORD ON SOLR 49

Download ActsAsSolr/app/controllers/books_controller.rb

def search

@results = Book.find_by_solr(params[:term],

:facets => {:fields => [:category, :year]})

end

Then we could render our search results like so:

Download ActsAsSolr/app/views/books/search.html.erb

<h1><%= pluralize(@results.total, 'result') %></h1>

<% for book in @results.docs %>

<%= link_to book.title, book %>

<% end %>

And that’s all there is to it! Finally, to stop the Solr server, we use:

$ rake solr:stop

When tinkering around, you may want to start with a fresh Solr index.

Do do this, stop Solr, delete that directory, and restart Solr. The search

index data resides in vendor/plugins/acts_as_solr/solr/solr/data by default.

So we’ve put together full-text searching with faceting in fairly short

order, with very little changes to our Active Record models.

Discussion

There are a couple of additional bells and whistles in acts_as_solr worth

mentioning:

• autocommit control, so batch indexing can commit to Solr at the

end instead of for every record, and

• multi-model search, allowing full-text searches to span ActiveRe-

cord models

Also See

If you fancy a Ruby alternative, see Recipe 7, Full-Text Search with Fer-

ret, on page 40.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ActsAsSolr/app/controllers/books_controller.rb
http://media.pragprog.com/titles/fr_arr/code/ActsAsSolr/app/views/books/search.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=49

Part III

Database Recipes

50
Prepared exclusively for Jeanne McDade

Recipe 9

Adding Foreign Key

Constraints

Problem

You want to add foreign key constraints to your database to, you know,

ensure referential integrity. That way you can’t accidentally delete records

that other ones refer to, be it through your Rails application or another

application that shares your database.

Solution

Let’s say we have a classic order, line item, and product model arrange-

ment. A line item points to both a product and an order.

Download buffet/app/models/line_item.rb

class LineItem < ActiveRecord::Base

belongs_to :order

belongs_to :product

end

Download buffet/app/models/order.rb

class Order < ActiveRecord::Base

has_many :line_items

end

Download buffet/app/models/product.rb

class Product < ActiveRecord::Base

has_many :line_items

end

The only interesting migration file is for the line_items table:

Download buffet/db/migrate/006_create_line_items.rb

class CreateLineItems < ActiveRecord::Migration

def self.up

create_table :line_items do |t|

t.integer :product_id, :null => false

t.integer :order_id, :null => false

end

end

def self.down

drop_table :line_items

end

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/line_item.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/order.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/product.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/db/migrate/006_create_line_items.rb

9. ADDING FOREIGN KEY CONSTRAINTS 52

So to create a line item, we must have both an order and a product:

item = LineItem.create(:order => an_order, :product => a_tshirt)

In other words, it makes no sense to have a line item that doesn’t refer-

ence a product. But then we can turn around and delete the a_tshirt

record from the database, leaving the line item holding nil product.

That’s no good—let’s fix it!

Databases are smart about keeping invariants like this in check. Migra-

tions don’t support adding foreign key constraints, but we can make it

look as though they do. Here’s the revised migration for line items:

Download buffet/db/migrate/006_create_line_items.rb

class CreateLineItems < ActiveRecord::Migration

extend MigrationHelpers

def self.up

create_table :line_items do |t|

t.integer :product_id, :null => false

t.integer :order_id, :null => false

end

fk :line_items, :product_id, :products

fk :line_items, :order_id, :orders

end

def self.down

drop_fk :line_items, :order_id

drop_fk :line_items, :product_id

drop_table :line_items

end

end

The fk method adds the constraint when the migration is applied, and

the drop_fk method does the reverse. We’ve extended this migration class

to support these methods, which are tucked away in the MigrationHelpers

module. Here’s what’s in that module:

Download buffet/lib/migration_helpers.rb

module MigrationHelpers

def fk(from_table, from_column, to_table)

execute %(alter table #{from_table}

add constraint #{constraint_name(from_table, from_column)}

foreign key (#{from_column})

references #{to_table}(id))

end

def drop_fk(from_table, from_column)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/db/migrate/006_create_line_items.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/lib/migration_helpers.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=52

9. ADDING FOREIGN KEY CONSTRAINTS 53

execute %(alter table #{from_table}

drop foreign key #{constraint_name(from_table, from_column)})

end

def constraint_name(table, column)

"fk_#{table}_#{column}"

end

end

Using the execute method lets us run arbitrary SQL inside a migration,

and this module keeps it all in one tidy spot. Better yet, we can call

these helpers from any migration file that extends the module.

So now if we try to delete a product that a line item is pointing to, we

get an exception:

ActiveRecord::StatementInvalid: Mysql::Error: Cannot delete or update

a parent row: a foreign key constraint fails

(`buffet_development/line_items`, CONSTRAINT `fk_line_items_product_id`

FOREIGN KEY (`product_id`) REFERENCES `products` (`id`)):

DELETE FROM `products` WHERE `id` = 1

And that’s exactly what we want to happen. When a foreign key con-

straint fails, we’ve broken a fundamental truth (an invariant) in our

business logic. That calls for an explicit action on our part to deal with

it.

Discussion

As of Rails 2.0, referential integrity checking is disabled while test fix-

tures are being created. That means you don’t necessarily have to load

fixtures in a specific order.

Also See

• The Foreign Key Migration plugin: http://www.redhillonrails.org/#foreign_key_migrations

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://www.redhillonrails.org/#foreign_key_migrations
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=53

Recipe 10

Write Your Own Custom

Validations

By Matthew Bass (http://matthewbass.com)

Matthew Bass is an independent software developer who has been enjoying the free-

dom of Ruby for many years now. He is a speaker, agile evangelist, and Mac addict. He

co-organizes the Ruby Meetup in his home town of Raleigh, North Carolina and blogs at

http://matthewbass.com.

Problem

Rails gives us a solid set of model validations right out of the box. But

what if you need to write application-specific validations, and share

them across models?

Solution

Say we have a Student model that validates the presence of a name and

that the social security number is of the format ###-##-#### (where

each pound sign is a number), like this:

class Student < ActiveRecord::Base

validates_presence_of :name

validates_format_of :ssn,

:with => /^[\d]{3}-[\d]{2}-[\d]{4}$/,

:message => "must be of format ###-##-####"

end

Then imagine we add a new Teacher model and teachers also need to

have valid social security numbers. Now, we could copy/paste the SSN

formatting, but as advanced programmers we know better. Instead,

we’d like to write a declarative validation we can reuse, something like

this:

Download CustomValidations/app/models/student.rb

class Student < ActiveRecord::Base

validates_presence_of :name

validates_ssn :ssn

end

Download CustomValidations/app/models/teacher.rb

class Teacher < ActiveRecord::Base

validates_presence_of :name

validates_ssn :ssn

Prepared exclusively for Jeanne McDade

http://matthewbass.com
http://matthewbass.com
http://media.pragprog.com/titles/fr_arr/code/CustomValidations/app/models/student.rb
http://media.pragprog.com/titles/fr_arr/code/CustomValidations/app/models/teacher.rb

10. WRITE YOUR OWN CUSTOM VALIDATIONS 55

end

And while we’re asking for stuff, we might as well handle multiple SSN

attributes, like so:

validates_ssn :lost_ssn, :replacement_ssn

OK, so how do we get there? Well, first we need to create a class-level

method that can be invoked from any subclass of ActiveRecord::Base.

We’ll tuck away our call to validates_format_of in that class method, call-

ing it once per attribute. Our class method, by itself, looks like this:

def self.validates_ssn(*attr_names)

attr_names.each do |attr_name|

validates_format_of attr_name,

:with => /^[\d]{3}-[\d]{2}-[\d]{4}$/,

:message => "must be of format ###-##-####"

end

end

Now, how do we get this method into ActiveRecord::Base? It turns out we

have several options. One way is to open up the ActiveRecord::Base class

and define our class method inline:

class ActiveRecord::Base

def self.validates_ssn(*attr_names)

attr_names.each do |attr_name|

validates_format_of attr_name,

:with => /^[\d]{3}-[\d]{2}-[\d]{4}$/,

:message => "must be of format ###-##-####"

end

end

end

This isn’t a bad option per se, but it can be somewhat difficult to test

under certain conditions. By sticking our class method in its own mod-

ule and then extending that module, we accomplish the same goal with-

out encumbering testability:

Download CustomValidations/lib/validations.rb

module CustomValidations

def validates_ssn(*attr_names)

attr_names.each do |attr_name|

validates_format_of attr_name,

:with => /^[\d]{3}-[\d]{2}-[\d]{4}$/,

:message => "must be of format ###-##-####"

end

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/CustomValidations/lib/validations.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=55

10. WRITE YOUR OWN CUSTOM VALIDATIONS 56

ActiveRecord::Base.extend(CustomValidations)

Here we’re gently mixing our custom validation methods in to the ActiveRe-

cord::Base class. That is, we use extend to add the methods of our Cus-

tomValidations module to the ActiveRecord::Base class object.

This is a better design because we can mix in our custom validation

methods only when we need them. And it leads to better code organiza-

tion. If we ever decide to write more validation methods, we can simply

add them to the CustomValidations module.

To put our nifty new validations to use, we drop this code in a file

called custom_validations.rb, for example, in the lib directory of our Rails

application. Then we require it in our environment.rb file and we can

start using the validates_ssn validation in all of our ActiveRecord models.

Finally, we need to test all this. We can sidestep the database com-

pletely by just calling valid?, and optionally checking the errors collec-

tion:

Download CustomValidations/test/unit/student_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class StudentTest < ActiveSupport::TestCase

def test_validation_succeeds

s = Student.new(:name => "Charlie Brown", :ssn => "123-12-1234")

assert s.valid?

end

def test_validation_fails

s = Student.new(:name => "Linus", :ssn => "1234")

assert !s.valid?

assert_equal "must be of format ###-##-####", s.errors[:ssn]

end

end

Download CustomValidations/test/unit/teacher_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class TeacherTest < ActiveSupport::TestCase

def test_valid

t = Teacher.new(:name => 'Miss Othmar')

t.ssn = "123-12-1234"

assert t.valid?

end

def test_invalid

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/CustomValidations/test/unit/student_test.rb
http://media.pragprog.com/titles/fr_arr/code/CustomValidations/test/unit/teacher_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=56

10. WRITE YOUR OWN CUSTOM VALIDATIONS 57

t = Teacher.new(:name => 'Miss Othmar')

t.ssn = "1234"

assert !t.valid?

assert_equal "must be of format ###-##-####", t.errors[:ssn]

end

end

Encapsulating validations like this leads to far more readable model

classes, not to mention that warm feeling you get when you realize

your code is high and DRY.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=57

Recipe 11

Analyzing SQL Queries

By Pierre-Alexandre Meyer (http://www.mouraf.org)

Pierre-Alexandre is a 21 year old French application developer specializing in Ruby on Rails.

He’s currently pursuing a Master’s Degree at Cornell University.

Problem

Analyzing your database queries is a fundamental task before deploy-

ing your application to the big, bold world. To do that, you could walk

through the main pages of your app and watch the SQL that gets

spewed out in the log file. But you already have integration tests for

the well-worn paths, so wouldn’t it be convenient if you could extract

the SQL scenarios from those tests and use them with your favorite

SQL benchmarking tools?

Solution

The first step is to collect the SQL generated by Active Record. Rails

uses database-specific adapters to execute SQL operations. Thankfully,

every adapter logs the SQL being run by calling the log_info method in

the AbstractAdapter class. So we’ll just intercept that call and stash

away the SQL statements:

Download SqlLogging/config/initializers/core_extensions.rb

if RAILS_ENV == "test"

class ActiveRecord::ConnectionAdapters::AbstractAdapter

@@queries = []

cattr_accessor :queries

def log_info_with_trace(sql, name, runtime)

return unless @logger and @logger.debug?

self.queries << sql

log_info_without_trace(sql, name, runtime)

end

alias_method_chain :log_info, :trace

end

end

We’ve added behavior onto the log_info method using alias_method_chain.

This is effectively the same as writing:

Prepared exclusively for Jeanne McDade

http://www.mouraf.org
http://media.pragprog.com/titles/fr_arr/code/SqlLogging/config/initializers/core_extensions.rb

11. ANALYZING SQL QUERIES 59

alias_method :log_info_without_trace, :log_info

alias_method :log_info, :log_info_with_trace

Whenever the log_info method is called, the log_info_with_trace method

will be executed first and then the log_info_without_trace method (which

is an alias for the original log_info method) is called.

Although we could capture all the queries in memory all the time, it’s

probably not wise in production. We just want to know which SQL

statements were run during our integration tests. To do that, notice

that we’ve wrapped the AbstractAdapter class definition in a condition

so that we only hook into the log_info method when we’re in test mode.

OK, let’s see how this works in the console:

$ ruby script/console test

Loading test environment (Rails 2.0.1)

>> ActiveRecord::ConnectionAdapters::AbstractAdapter::queries

=> []

>> Order.find :first

=> #<Order id: 1...>

>> Order.find_by_name('Pierre-Alexandre')

=> #<Order id: 1...>

>> ActiveRecord::ConnectionAdapters::AbstractAdapter::queries

=> ["SET NAMES 'utf8'", "SET SQL_AUTO_IS_NULL=0", "SELECT * FROM `orders`

LIMIT 1", "SHOW FIELDS FROM `orders`", "SELECT * FROM `orders`

WHERE (`orders`.`name` = 'Pierre-Alexandre') LIMIT 1"]

Great, we’re capturing SQL behind Active Record’s back. The next step

is to modify our integration tests to siphon off the SQL statements into

a file for our benchmarking tools to slurp up. To do that, we just wrap

the test_create_order method in a trace_sql block. Here are the relevant

parts:

Download SqlLogging/test/integration/story_test.rb

class StoryTest < ActionController::IntegrationTest

def test_create_order

trace_sql do

go_to_orders

place_order :name => 'Pierre-Alexandre', :total => 25.00

end

end

private

def trace_sql

yield

File.open("#{RAILS_ROOT}/tmp/integration.sql", "w") do |file|

queries = ActiveRecord::ConnectionAdapters::AbstractAdapter::queries.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/SqlLogging/test/integration/story_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=59

11. ANALYZING SQL QUERIES 60

join("\n")

file.write queries

end

end

end

Finally, after running our integration test, the SQL appears in the

tmp/integration.sql file:

SET NAMES 'utf8'

SET SQL_AUTO_IS_NULL=0

BEGIN

SELECT * FROM `orders`

INSERT INTO `orders` (`city`, `name`, `updated_at`, `country`, `total`,

`created_at`) VALUES(NULL, NULL, '2007-12-14 07:22:45', NULL, NULL,

'2007-12-14 07:22:45')

Discussion

This technique of opening up Rails internal classes and hooking into

methods (often called monkey patching) is powerful, and at the same

time potentially dangerous. Future versions of Rails may change inter-

nal workings and break our code. In this case, log_info is a public

method of a heavily-used API. It’s unlikely that this method would

change fundamentally, but it’s always possible.

Also See

Two plugins in particular use a similar technique to give you insight

into database activity:

• The query_trace plugin11 dumps the stack trace of where your

application is at when a SQL statement is run. It’s a great plu-

gin for pinpointing the exact location of a problematic query.

• The query_analyzer plugin12 prints out the MySQL execution plan

in your logs (using the MySQL EXPLAIN statement).

11. http://terralien.com/projects/querytrace/

12. http://svn.nfectio.us/plugins/query_analyzer

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://terralien.com/projects/querytrace/
http://svn.nfectio.us/plugins/query_analyzer
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=60

Recipe 12

Taking Advantage of

Master/Slave Databases

By Rick Olson (http://activereload.net/)

Thanks to Rick Olson for technical help with this recipe.

Problem

Scalability is one of those fighting words. (In fact, if you really want to

see how well your blog scales, just write a post stating that Rails can’t

possibly scale.) On a practical note, you have a number of knobs to

turn and levers to pull to help your application scale.

One naive approach to improving scalability is to throw more Mongrel

processes into the mix. But that’s futile if your database is the real bot-

tleneck. In that situation, after tuning your SQL queries, you may want

to partition database access into read and write operations using mas-

ter/slave database replication. Once you’ve set that up at the database

level, how do you arrange things in your application to take advantage

of it?

Ingredients

• Rick Olson’s masochism plugin:

$ script/plugin install http://ar-code.svn.engineyard.com/plugins/masochism/

Solution

Here’s the situation: We have an application that lets people give shouts

out to the world, you know, something like Twitter. When someone

shouts, we want it to go to the master (write) database. The database

server will then take care of replicating the shout down to our slave

database. Lots of people listen for shouts from their friends, so we want

reading shout records to go through the slave database.

Once we’ve configured replication at the database server level13, the

masochism plugin lets us transparently take advantage of the master/slave

13. As database replication is very specific to your database, it’s beyond the scope of

this recipe. Refer to http://dev.mysql.com/doc/refman/5.0/en/replication-howto.html for MySQL

instructions, for example.

Prepared exclusively for Jeanne McDade

http://activereload.net/
http://dev.mysql.com/doc/refman/5.0/en/replication-howto.html

12. TAKING ADVANTAGE OF MASTER/SLAVE DATABASES 62

database arrangement. First we need to configure the master and slave

database in our config/database.yml file:

master_database:

adapter: mysql

database: the_master_database

host: master.host.name

...

production:

adapter: mysql

database: the_slave_database

host: slave.host.name

...

By default, the masochism plugin will use the database labeled mas-

ter_database for write operations, and whatever database you have con-

figured for your current environment as the read-only/slave database.

In this case, if we’re running in production the slave database will be

the_slave_database. In production we’d likely set up the slave database

on a different host than the master.

The masochism plugin makes all this transparent by swapping the database

connections for us depending on the underlying Active Record opera-

tion. Update statements, operations in a transaction, and reloads are

sent to the master database, and the rest go to the slave database.

So next we need to set up the connection proxy by adding this to our

config/environments/production.rb file:

config.after_initialize do

ActiveReload::ConnectionProxy.setup!

end

OK, so how do we test this? One easy way is to try it without database

replication being configured. If we write a record, it should only show

up in the master database. Let’s try that in the console:

$ ruby script/console -e production

>> Shout.create :name => "Mike", :shout => "Just ate some sushi!"

=> #<Shout id: 3...>

>> Shout.find(:all)

=> []

As expected, we gave a shout out and it was written to the master

database. But since we haven’t configured database replication between

the master and slave, calling find doesn’t find the shout. This tells us

that the find is using the slave database. In other words, we know our

Active Record operations are flowing to the appropriate database.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=62

12. TAKING ADVANTAGE OF MASTER/SLAVE DATABASES 63

If we were now to configure master/slave replication at the database

level, we should end up with shouts in the slave database:

>> Shout.find(:all)

=> [#<Shout id: 3 ...]

Now we can distribute the bulk of the database load across a number

of slave databases, and let the master database focus on handling write

operations.

Discussion

Using slave databases has some disadvantages, primarily the replica-

tion lag. While the replication is in progress, the slave database won’t

have the latest data. If you need to have the latest data in some parts of

your code, you can make the finders fall back to the master database

by wrapping the call in a transaction:

>> Shout.transaction { Shout.find(:all) }

=> [#<Shout id: 3 ...]

If you have a model that should use the master database for all opera-

tions, just change the model to subclass ActiveReload::MasterDatabase:

class SuperShout < ActiveReload::MasterDatabase

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=63

Part IV

User Interface Recipes

64
Prepared exclusively for Jeanne McDade

Recipe 13

Replacing In-View Raw

JavaScript with RJS

By Jared Haworth (http://www.alloycode.com/)

Jared Haworth is working to change the world as a Senior Software Engineer at Education

Revolution. He is also actively involved in Rails Advocacy through his company Alloy Code,

a North Carolina based web development shop.

Problem

You need a JavaScript-powered link or button. You’re already using

RJS to generate JavaScript in other places of your application, or you

just don’t care to write raw JavaScript. You want to use familiar RJS

syntax to generate JavaScript for the link and button functions, too.

Solution

The link_to_function and button_to_function helpers will happily take any

JavaScript as the function parameter. The often overlooked update_page

method gives us a JavaScript generator (called page by convention)

just like we’d get in an RJS file. In fact, there’s nothing special about

the page object in an RJS file.

So if we need to toggle the visibility of a quick_help div, for example, we’d

use:

Download ReplacingRawJSWithRJS/app/views/events/new.html.erb

<%= link_to_function 'Help', update_page { |page| page[:quick_help].toggle } %>

<div id="quick_help" style="display: none;">

Here's some help...

</div>

The update_page code block spits out Prototype-flavored JavaScript

and substitutes it into the view at the time the page is rendered.

As a matter of practicality, the link_to_function and button_to_function

helpers will also take a block if no function is specified. The block param-

eter is (you guessed it) a JavaScript generator. This makes it easy to

update multiple elements or add special effects in a multi-line stanza:

<%= link_to_function('Help', nil) do |page|

page[:quick_help].toggle

page[:quick_help].visual_effect :highlight

Prepared exclusively for Jeanne McDade

http://www.alloycode.com/
http://media.pragprog.com/titles/fr_arr/code/ReplacingRawJSWithRJS/app/views/events/new.html.erb

13. REPLACING IN-VIEW RAW JAVASCRIPT WITH RJS 66

end %>

Now we’re moving in the right direction, but this inline code can get

messy quickly. So let’s take this a step further by refactoring our link_to_function

calls to encourage reusability across views. View helpers are a good

place to stash reusable view code, and as if by design we can call the

update_page method from a helper. So in application_helper.rb we just

bottle up the toggling code in a helper method:

Download ReplacingRawJSWithRJS/app/helpers/application_helper.rb

def toggle_div(div)

update_page do |page|

page[div].toggle

end

end

Now we’ve got a helper that generates JavaScript to toggle the visibility

of whatever DOM element we give it. Here’s how we call it:

Download ReplacingRawJSWithRJS/app/views/events/show.html.erb

<p>

<%= link_to_function "Show Venue Details", toggle_div(:venue_details) %>

</p>

<div id="venue_details" style="display: none;">

<%= render :partial => 'venue', :object => @event.venue %>

</div>

The upshot of moving this code around until it found a comfy home is

now we can toggle things from any view without the DRY police crying

foul:

Download ReplacingRawJSWithRJS/app/views/venues/show.html.erb

<p>

<%= link_to_function "Show Event Details", toggle_div(:event_details) %>

</p>

<div id="event_details" style="display: none;">

<%= render :partial => "event", :collection => @venue.events %>

</div>

Where it makes sense, we can also call these helpers from controllers

in response to a full AJAX request.

Give your helper methods good names and your views start to become

quite readable, not to mention easier to maintain.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ReplacingRawJSWithRJS/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_arr/code/ReplacingRawJSWithRJS/app/views/events/show.html.erb
http://media.pragprog.com/titles/fr_arr/code/ReplacingRawJSWithRJS/app/views/venues/show.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=66

Recipe 14

Handling Multiple Models In

One Form

By Ryan Bates (http://railscasts.com/)

Ryan Bates has been involved in web development since 1998. In 2005 he started working

professionally with Ruby on Rails and is now best known for his work on Railscasts, the free

Ruby on Rails screencast series.

Problem

Most of the form code you see handles one model at a time. That’s not

always practical. Sometimes you need to create and/or update two (or

more) models in a single form, where there is a one-to-many association

between them.

Solution

Let’s say we’re keeping track of tasks we need to do on projects. When

we create or update a project, we’d like to add, remove, and update its

tasks in a single form.

Let’s start with a has_many relationship between Project and Task. To

keep things simple, we’ll give each model a required attribute called

name.

class Project < ActiveRecord::Base

has_many :tasks, :dependent => :destroy

validates_presence_of :name

end

Prepared exclusively for Jeanne McDade

http://railscasts.com/

14. HANDLING MULTIPLE MODELS IN ONE FORM 68

class Task < ActiveRecord::Base

belongs_to :project

validates_presence_of :name

end

We’ll be using the Prototype JavaScript library, so before we go any

further let’s make sure it’s loaded in our layout file:

Download MultiModelForm/app/views/layouts/application.html.erb

<%= javascript_include_tag :defaults %>

Now we turn our attention to the form for creating a project along with

its associated, multiple tasks.

When dealing with multiple models in one form it’s helpful to make

one model the primary focus and build the other models through the

association. In this case, we’ll make the Project model the primary and

build its tasks through the has_many association. So in the new action

of our ProjectsController we create a Project object like normal, but we

also add three tasks to the project (in memory) so that our form has

something to work with:

Download MultiModelForm/app/controllers/projects_controller.rb

def new

@project = Project.new

3.times { @project.tasks.build }

end

The form template is a bit tricky since we need to handle fields for the

Project model and each of its Task models. So let’s break the problem

down a bit by using a partial to render the Task fields and a helper to

create the link that adds a new task:

Download MultiModelForm/app/views/projects/_form.html.erb

<%= error_messages_for :project %>

<% form_for @project do |f| -%>

<p>

Name: <%= f.text_field :name %>

</p>

<div id="tasks">

<%= render :partial => 'task', :collection => @project.tasks %>

</div>

<p>

<%= add_task_link "Add a task" %>

</p>

<p>

<%= f.submit "Submit" %>

</p>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/controllers/projects_controller.rb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/views/projects/_form.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=68

14. HANDLING MULTIPLE MODELS IN ONE FORM 69

<% end -%>

Before we get into the contents of the task partial, let’s take a look at

that add_task_link helper method:

Download MultiModelForm/app/helpers/projects_helper.rb

def add_task_link(name)

link_to_function name do |page|

page.insert_html :bottom, :tasks, :partial => 'task', :object => Task.new

end

end

When we click the “Add a task” link, we want a new set of task fields

to appear at the bottom of the existing task fields in the form. Rather

than bother the server with this, we can use JavaScript to add the fields

dynamically. The link_to_function method accepts a block of RJS code. We

usually associate RJS code with asynchronous calls back to the server.

But in this case the RJS code generates JavaScript that gets executed

in the browser immediately when the user clicks the link. The upshot is

rendering the fields for adding a new task does not require a trip back

to the server, which leads to faster response times.

Looking back to the form partial, we’re using form_for to dedicate the

form to the @project model. How then do we add fields for each of the

project’s tasks? The task partial holds the answer:

Download MultiModelForm/app/views/projects/_task.html.erb

<div class="task">

<% new_or_existing = task.new_record? ? 'new' : 'existing' %>

<% prefix = "project[#{new_or_existing}_task_attributes][]" %>

<% fields_for prefix, task do |task_form| -%>

<p>

Task: <%= task_form.text_field :name %>

<%= link_to_function "remove", "$(this).up('.task').remove()" %>

</p>

<% end -%>

</div>

The key ingredient here is the fields_for method. It behaves much like

form_for, but does not render the surrounding form HTML tag. This lets

us switch the context to a different model in the middle of a form—as if

we’re embedding one form within another.

The first parameter to fields_for is very important. This string will be

used as the prefix for the name of each task form field. As we’ll be

using this partial to also render existing tasks—and we want to keep

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/helpers/projects_helper.rb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/views/projects/_task.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=69

14. HANDLING MULTIPLE MODELS IN ONE FORM 70

them separate when the form is submitted—in the prefix we include an

indication of whether the task is new or existing. (Ideally we’d create

the prefix string in a helper, but we’ve inlined it here to avoid further

indirection.)

The generated HTML for a new task name input looks like this:

<input name="project[new_task_attributes][][name]" size="30" type="text"/>

If this were an existing task, Rails would automatically place the task

id between the square brackets, like this:

<input name="project[existing_task_attributes][7][name]" size="30" type="text"/>

Now when the form is submitted, Rails will decode the input element’s

name to impose some structure in the params hash. Square brackets

that are filled in become keys in a nested hash. Square brackets that

are empty become an array. For example, if we submit the form with

three new tasks, the params hash looks like this:

"project" => {

"name" => "Yard Work",

"new_task_attributes" => [

{ "name" => "rake the leaves" },

{ "name" => "paint the fence" },

{ "name" => "clean the gutters" }

]

}

Notice that the attributes for the project and each task are nestled

inside the project hash. This is convenient because it means that the

create action back in our controller can simply pass all the project

attributes through to the Project model without worrying about what’s

inside:

Download MultiModelForm/app/controllers/projects_controller.rb

def create

@project = Project.new(params[:project])

if @project.save

flash[:notice] = "Successfully created project and tasks."

redirect_to projects_path

else

render :action => 'new'

end

end

This looks like a standard create action for a single-model form. There’s

just one problem: When we call Project.new(params[:project]) Active Record

assumes that our Project model has a corresponding attribute called

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/controllers/projects_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=70

14. HANDLING MULTIPLE MODELS IN ONE FORM 71

new_task_attributes because it sees a key called new_task_attributes in the

params[:project] hash. That is, Active Record will try to mass assign all

the data in the params[:project] hash to corresponding attributes in the

Project model.

One convenient way to keep all this transparent from the controller’s

perspective is to use a virtual attribute. To do that, we just create a set-

ter method in our Project model called new_task_attributes= which takes

an array and builds a task for each element:

Download MultiModelForm/app/models/project.rb

def new_task_attributes=(task_attributes)

task_attributes.each do |attributes|

tasks.build(attributes)

end

end

It may not look like these tasks are being saved anywhere, but Rails

will do that automatically for us once the project is saved because both

the project and its associated tasks are new records.

That’s it for creating a project, now let’s move on to updating one.

Just like before, we need to be able to add and remove tasks dynami-

cally, but this time if a task already exists it should be updated instead.

The controller actions only need to be concerned about the project so

they are fairly conventional. As before, the updating of the tasks will be

handled in the Project model:

Download MultiModelForm/app/controllers/projects_controller.rb

def edit

@project = Project.find(params[:id])

end

def update

@project = Project.find(params[:id])

if @project.update_attributes(params[:project])

flash[:notice] = "Successfully updated project and tasks."

redirect_to project_path(@project)

else

render :action => 'edit'

end

end

The form partial can stay the same. However, when we submit the

form with existing tasks, the params[:project] hash will include a key

called existing_task_attributes. So we need to add an existing_task_attributes=

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/models/project.rb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/controllers/projects_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=71

14. HANDLING MULTIPLE MODELS IN ONE FORM 72

method to our Project model which will take each existing task and

either update it or destroy it depending on if the attributes are passed:

Download MultiModelForm/app/models/project.rb

after_update :save_tasks

def existing_task_attributes=(task_attributes)

tasks.reject(&:new_record?).each do |task|

attributes = task_attributes[task.id.to_s]

if attributes

task.attributes = attributes

else

tasks.delete(task)

end

end

end

def save_tasks

tasks.each do |task|

task.save(false)

end

end

Notice that we’re saving the tasks in an after_update callback. This is

important because unlike before, the existing tasks will not automati-

cally be saved when the project is updated.14 And since callbacks are

wrapped in a transaction, it will properly roll back the save if an unex-

pected problem occurs.

Passing false to the task.save method bypasses validation. Instead, to

ensure that all the tasks get validated when the project is validated, we

just add this line to the Project model:

validates_associated :tasks

This ensures everything is valid before saving. And if validation fails,

then the use of error_messages_for :project in the form template includes

the validation errors for the project and any of its tasks.

So now we can create and edit projects and their tasks in one fell swoop.

And by using virtual attributes, we kept the controller code happily

ignorant that we were handling multiple models from a single form.

14. This behavior can vary depending on the type of association and whether the records

are new. It’s a good idea to thoroughly test each combination to ensure every model is

validated and saved properly.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/models/project.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=72

14. HANDLING MULTIPLE MODELS IN ONE FORM 73

Also See

For an alternative approach, see Recipe 15, Simplifying Controllers With

a Presenter, on the next page.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=73

Recipe 15

Simplifying Controllers With a

Presenter

By Jay Fields (http://jayfields.com)

Jay Fields is a software developer and consultant at ThoughtWorks. He has a passion for

discovering and maturing innovative solutions. His most recent work has been delivering

large enterprise applications utilizing Ruby and Rails. He is also very interested in maturing

software design through software testing.

Problem

As your application has grown, so have your controllers. Rather than

just orchestrating the work, they’ve taken on the responsibility of aggre-

gating data from various objects to make life simpler for the views. As

a result, maintainability has been compromised. You need to breathe

new life into the controllers.

Solution

To illustrate the problem, imagine we have a controller that’s responsi-

ble for creating, populating, and saving three models:

Download PresenterPattern/app/controllers/orders_controller.rb

class OrdersController < ApplicationController

def new

@account = UserAccount.new

@address = Address.new

@credential = UserCredential.new

end

def create

@account = UserAccount.new(params[:account])

@address = Address.new(params[:address])

@credential = UserCredential.new(params[:credential])

account_saved = @account.save

@address.user_account = @account

@credential.user_account = @account

if account_saved && @address.save && @credential.save

redirect_to thank_you_url

end

end

Prepared exclusively for Jeanne McDade

http://jayfields.com
http://media.pragprog.com/titles/fr_arr/code/PresenterPattern/app/controllers/orders_controller.rb

15. SIMPLIFYING CONTROLLERS WITH A PRESENTER 75

end

And to collect all the data in one form, we have the following new.html.erb

template:

<% form_tag(:action => 'create') do -%>

<table>

<tr><td colspan="2">Account Information:</td></tr>

<tr>

<td>Name</td>

<td><%= text_field :account, :name %></td>

</tr>

<tr><td colspan="2">Address Information:</td></tr>

<tr>

<td>Address Line 1</td>

<td><%= text_field :address, :line_1 %></td>

</tr>

<tr>

<td>Address Line 2</td>

<td><%= text_field :address, :line_2 %></td>

</tr>

<tr>

<td>City</td>

<td><%= text_field :address, :city %></td>

</tr>

<tr>

<td>State</td>

<td><%= text_field :address, :state %></td>

</tr>

<tr>

<td>Zip Code</td>

<td><%= text_field :address, :zip_code %></td>

</tr>

<tr><td colspan="2">Credential Information:</td></tr>

<tr>

<td>Username</td>

<td><%= text_field :credential, :username %></td>

</tr>

<tr>

<td>Password</td>

<td><%= text_field :credential, :password %></td>

</tr>

</table>

<%= submit_tag "Complete Order" %>

<% end -%>

This works, but the controller is an eyesore. Also, testing individual

behaviors, such as that the redirect does not occur if the credential

doesn’t save correctly, is a bit of a pain.

The solution is to introduce an intermediate object—a presenter—to

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=75

15. SIMPLIFYING CONTROLLERS WITH A PRESENTER 76

relieve some burden from the controller, while at the same time keeping

the view simple. First, we’ll change the controller to be more concise and

focused:

Download PresenterPattern/app/controllers/orders_controller.rb

def new

@presenter = OrderPresenter.new(params[:presenter])

end

def create

@presenter = OrderPresenter.new(params[:presenter])

if @presenter.save

redirect_to thank_you_url

end

end

Now that we have only one instance variable being set in the controller,

we change the view to use form_for, and change each field’s name to

include that field’s model name:

Download PresenterPattern/app/views/orders/new.html.erb

<% form_for :presenter,

:url => {:action => 'create'} do |form| %>

<table>

<tr><td colspan="2">Account Information:</td></tr>

<tr>

<td>Name</td>

<td><%= form.text_field :account_name %></td>

</tr>

<tr><td colspan="2">Address Information:</td></tr>

<tr>

<td>Address Line 1</td>

<td><%= form.text_field :address_line_1 %></td>

</tr>

<tr>

<td>Address Line 2</td>

<td><%= form.text_field :address_line_2 %></td>

</tr>

<tr>

<td>City</td>

<td><%= form.text_field :address_city %></td>

</tr>

<tr>

<td>State</td>

<td><%= form.text_field :address_state %></td>

</tr>

<tr>

<td>Zip Code</td>

<td><%= form.text_field :address_zip_code %></td>

</tr>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/PresenterPattern/app/controllers/orders_controller.rb
http://media.pragprog.com/titles/fr_arr/code/PresenterPattern/app/views/orders/new.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=76

15. SIMPLIFYING CONTROLLERS WITH A PRESENTER 77

<tr><td colspan="2">Credential Information:</td></tr>

<tr>

<td>Username</td>

<td><%= form.text_field :credential_username %></td>

</tr>

<tr>

<td>Password</td>

<td><%= form.text_field :credential_password %></td>

</tr>

</table>

<%= form.submit "Complete Order" %>

<% end %>

The presenter itself is just a plain ol’ Ruby object that encapsulates

access to three models. Here’s the code for it:

Download PresenterPattern/app/presenters/order_presenter.rb

class OrderPresenter

def initialize(params)

params.each_pair do |attribute, value|

self.send :"#{attribute}=", value

end unless params.nil?

end

def account

@account ||= UserAccount.new

end

def address

@address ||= Address.new

end

def credential

@credential ||= UserCredential.new

end

def save

account_saved = account.save

address.user_account = account

credential.user_account = account

account_saved && address.save && credential.save

end

def method_missing(model_attribute, *args)

model, *method_name = model_attribute.to_s.split("_")

super unless self.respond_to? model.to_sym

self.send(model.to_sym).send(method_name.join("_").to_sym, *args)

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/PresenterPattern/app/presenters/order_presenter.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=77

15. SIMPLIFYING CONTROLLERS WITH A PRESENTER 78

There’s an interesting trick here. When we pluck the form parame-

ters out of the presenter hash, the parameter keys will have a model

name and a corresponding attribute name. So, for example, the value

of the account name will be indexed by the account_name key. We

need to unravel that so the value is assigned to the name attribute

of the account object living inside the presenter. To do that, we use

method_missing to first intercept the call to account_name=, for example,

and then forward it on to the account object. It keeps the presenter

flexible, but it relies on careful naming of the form fields.

One last step and we’re home free. We’ve added the presenter to the

app/presenters directory, which Rails doesn’t know about. So finally we

need to add this directory to the Rails load path in environment.rb:

Download PresenterPattern/config/environment.rb

config.load_paths += %W(#{RAILS_ROOT}/app/presenters)

So we’ve lightened the load on our controller, and gained a presenter

object that aggregates view data and can be tested without any depen-

dencies on Rails.

Discussion

Arguably we should push the logic of the OrderPresenter.save method

back into one of the models, preferably wrapped in a transaction.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/PresenterPattern/config/environment.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=78

Recipe 16

Validating Required Form

Fields Inline

By Jarkko Laine (http://jlaine.net)

Jarkko Laine is one of the earliest Rails evangelists in Europe, with more than two years of

experience in teaching and giving talks about Rails. He wrote Beginning Ruby on Rails E-

Commerce: From Novice to Professional [HL06] with Christian Hellsten and is the founder of

the Finnish Rails user community. He currently works as a senior developer for http://dotherightthing.com,

a site for rating and discussing the social performance of world’s businesses. In his freetime,

Jarkko runs through forests like a gnu and writes about anything he finds interesting on his

weblog.

Problem

Rails has powerful and easy-to-use form validation mechanisms on the

server side. However, from the user interface perspective it would be

valuable to catch at least the most obvious input errors—such as miss-

ing elements that are required—before the form is even submitted.

Ingredients

• Michael Schuerig’s validation_reflection plugin:

$ script/plugin install ←֓

svn://rubyforge.org//var/svn/valirefl/validation_reflection/trunk

Solution

If we’re signing up new users, we need their e-mail and a password. So

let’s automatically mark those form fields as being required and vali-

date the required fields actually contain values before the user presses

the “Submit” button.

We’ll tackle the solution in two steps. First, we’ll extract validation infor-

mation from a Rails model. Then we’ll write a custom form builder (see

Recipe 22, Keeping Forms Dry and Flexible, on page 115) to automati-

cally decorate the required fields and validate them inline.

Models carry around a lot of useful information. For example, our User

model knows that the email and password fields are mandatory because

we said so:

Prepared exclusively for Jeanne McDade

http://jlaine.net
http://dotherightthing.com

16. VALIDATING REQUIRED FORM FIELDS INLINE 80

class User < ActiveRecord::Base

validates_presence_of :email, :password

end

The validation_reflection plugin lets us tease this information out. For

example, we can call the reflect_on_validations_for method to see the vali-

dations for a specific field of our User model:

$ ruby script/console

>> User.reflect_on_validations_for(:email)

=> [#<ActiveRecord::Reflection::MacroReflection:0x1834a40

@macro=:validates_presence_of, @name=:email, @options=nil,

@active_record=User(id: integer, login: string, email: string,

password: string, created_at: datetime, updated_at: datetime)>]

>> User.reflect_on_validations_for(:password)

=> [#<ActiveRecord::Reflection::MacroReflection:0x1834464

@macro=:validates_presence_of, @name=:password, @options=nil,

@active_record=User(id: integer, login: string, email: string,

password: string, created_at: datetime, updated_at: datetime)>]

Now we can use this knowledge in our custom form builder:

Download InlineFormValidations/lib/validating_form_builder.rb

class ValidatingFormBuilder < ActionView::Helpers::FormBuilder

helpers = field_helpers +

%w(date_select datetime_select time_select) -

%w(hidden_field label fields_for)

helpers.each do |name|

define_method(name) do |field, *args|

options = args.last.is_a?(Hash) ? args.pop : {}

@template.content_tag(:p,

label(field, label_text(field)) + " " +

super(field, options))

end

end

private

def field_name(field)

"#{@object_name.to_s.underscore}_#{field.to_s.underscore}"

end

def label_text(field)

"#{field.to_s.humanize}#{required_mark(field)}"

end

def required_mark(field)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/InlineFormValidations/lib/validating_form_builder.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=80

16. VALIDATING REQUIRED FORM FIELDS INLINE 81

required_field?(field) ? ' (*)' : ''

end

def required_field?(field)

@object_name.to_s.camelize.constantize.

reflect_on_validations_for(field).

map(&:macro).include?(:validates_presence_of)

end

end

At a first glance, this form builder looks just like a normal form builder.

However, we’ve added the required_field? method to check whether a

given field is required and if so we include a simple indicator (an aster-

isk) in the field’s label text.

While this is very nifty, it’s not very interactive. However, with a small

modification and a bit of JavaScript we can make the form tell the

user whether she missed a required field. First we add the following

JavaScript to our application.js file (and remember to include it in our

layout file):

Download InlineFormValidations/public/javascripts/application.js

function checkPresence(field) {

var hint = $F(field).length == 0 ? "Try again!" : "Right on!";

if ($(field + '_hint')) {

$(field + '_hint').update(hint);

} else {

content = '' +

hint + '';

new Insertion.After(field, content);

}

}

This function checks whether a field is empty and inserts an appropri-

ate message after the form field. Next we just need to call this function

for our required form fields. We can do that back in our form builder by

adding a check before the form field is generated:

Download InlineFormValidations/lib/validating_form_builder.rb

if %w(text_field password_field).include?(name) && required_field?(field)

options[:onblur] = "checkPresence('#{field_name(field)}')"

end

@template.content_tag(:p,

label(field, label_text(field)) + " " +

super(field, options))

This code checks whether the helper we’re creating is a required text

or password field. If so, we add an onblur event handler that calls our

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/InlineFormValidations/public/javascripts/application.js
http://media.pragprog.com/titles/fr_arr/code/InlineFormValidations/lib/validating_form_builder.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=81

16. VALIDATING REQUIRED FORM FIELDS INLINE 82

checkPresence JavaScript function whenever the focus is moved away

from the form field.15 Now our form output as seen by a browser looks

something like this:

<form action="/users" method="post">

<p>

<label for="user_login">Login</label>

<input id="user_login" name="user[login]" size="30" type="text" />

</p>

<p>

<label for="user_email">Email (*)</label>

<input id="user_email" name="user[email]"

onblur="checkPresence('user_email')" size="30" type="text" />

</p>

<p>

<label for="user_password">Password (*)</label>

<input id="user_password" name="user[password]"

onblur="checkPresence('user_password')" size="30" type="text" />

</p>

<p>

<input name="commit" type="submit" value="Create" />

</p>

</form>

The email and password fields include asterisks in their labels, and when

the user tabs through those fields (for example) the phrase “Right on!”

or “Try again!” appears below the input field. And because this func-

tionality is tucked away in our form builder, it applies to all forms that

use the builder.

Discussion

You could easily extend the validation to also cater to more advanced

validation such as text length or format (for example, for e-mail addresses).

This way you could easily make your forms more user-friendly and at

the same time save a few request cycles down to the server. You could

also extend the form builder so that it would make Ajax requests to

check whether a given unique login name is already taken, for exam-

ple.

15. We use an inline event handler here instead of less obtrusive methods for the sake of

brevity.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=82

Recipe 17

Creating a Wizard

By Mike Hagedorn (http://www.silverchairsolutions.com)

Mike Hagedorn is a freelance web developer and founder of Silverchair Solutions, an agile

methods consulting firm located in Houston, TX. Mike has a long history of enterprise devel-

opment dating back to the bad old days of Java 1.0 and has been actively doing work

in Rails since late 2005. He has implemented solutions in Java, Cocoa (Objective-C) and

C#. To round things out he also moonlights as a professional musician and spends as many

weekends as possible backpacking.

Problem

You’ve used a Wizard before; it’s those series of screens with “Previous”

and “Next” buttons at the bottom. You can go backward and forward as

many times as you like until you get things just right. Indeed, a good

Wizard takes a user by the hand and guides her through a step-by-step

process.

Unfortunately, Wizards aren’t trivial to implement in web-based appli-

cations because the web is a stateless world. And in order to know

which step you’re on in a multi-step process, state is the very thing

that you need most. So just how do you roll your own Wizard?

Ingredients

• Scott Barron’s acts_as_state_machine plugin:

$ script/plugin install ←֓

http://elitists.textdriven.com/svn/plugins/acts_as_state_machine/trunk

Solution

Let’s say we want to create an application that lets users take a short

3-question quiz. We’ll need to keep track of which step of the quiz a

user is currently on, and therefore which question to present to the

user next (or previous). Here’s an example question:

Prepared exclusively for Jeanne McDade

http://www.silverchairsolutions.com

17. CREATING A WIZARD 84

Of course lots of people will take our quizzes, and sometimes they’ll

need to step away to ponder a particularly tough question, but we’ll let

them pick up right where they left off:

Now that we know what we want, let’s start with the models and migra-

tions we’ll need. A Quiz has many Answers and Questions, and it remem-

bers its current state:

Download Wizard/app/models/quiz.rb

class Quiz < ActiveRecord::Base

has_many :answers, :dependent => :destroy

has_many :questions

end

Download Wizard/db/migrate/001_create_quizzes.rb

create_table :quizzes do |t|

t.string :state

t.timestamps

end

And a Question has many Answers—one for each person who took the

quiz—plus the question text and some meta-data we’ll get to later:

Download Wizard/app/models/question.rb

class Question < ActiveRecord::Base

belongs_to :quiz

has_many :answers

end

Download Wizard/db/migrate/003_create_questions.rb

create_table :questions do |t|

t.string :type, :text, :tag

t.integer :quiz_id

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Wizard/app/models/quiz.rb
http://media.pragprog.com/titles/fr_arr/code/Wizard/db/migrate/001_create_quizzes.rb
http://media.pragprog.com/titles/fr_arr/code/Wizard/app/models/question.rb
http://media.pragprog.com/titles/fr_arr/code/Wizard/db/migrate/003_create_questions.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=84

17. CREATING A WIZARD 85

t.timestamps

end

And finally an Answer reciprocates the relationships and has a value for

the answer:

Download Wizard/app/models/answer.rb

class Answer < ActiveRecord::Base

belongs_to :question

belongs_to :quiz

end

Download Wizard/db/migrate/002_create_answers.rb

create_table :answers do |t|

t.string :value

t.integer :question_id, :quiz_id

t.timestamps

end

That’s fairly straightforward. Now, how are we going to tie all the ques-

tions together so that they get asked in a certain order? Well, we could

use foreign keys in the database to point to the next and previous ques-

tions. But managing all that can get complicated as our quizzes become

more involved. Thankfully, there’s a simpler, more elegant way: a Finite

State Machine (FSM). Using an FSM lets us break down the problem

into a small number of states (the current question), and then move

between the states when an event is encountered (the next or previous

button is pressed). The mere thought of using a Finite State Machine

sounds intimidating (and may trigger flashbacks to a time when you

thought real programmers would never use them), but they’re really

easy. Let’s look at ours graphically:

A quiz has three states with each state corresponding to a question to

be posed. This small diagram completely defines what our 3-question

quiz application should do when a next or previous event occurs:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Wizard/app/models/answer.rb
http://media.pragprog.com/titles/fr_arr/code/Wizard/db/migrate/002_create_answers.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=85

17. CREATING A WIZARD 86

• If you’re in the first state (Q10) and you receive a next event, then

transition to the next question (Q20).

• If you’re in the second-question state (Q20) and you receive a next

event, then transition to the third-question state (Q30). However,

if you receive a previous event while in state Q20, go back to the

first question (Q10).

• If you’re in the third-question state (Q30) and receive a next event,

do nothing. But if you receive a previous event, back up to ques-

tion Q20.

That makes sense conceptually, but now how do we write code to make

it work? Ah, that’s where the acts_as_state_machine plugin comes in. We

can express the states and transitions right in our Quiz model, like so:

Download Wizard/app/models/quiz.rb

class Quiz < ActiveRecord::Base

has_many :answers, :dependent => :destroy

has_many :questions

acts_as_state_machine :initial => :q10

state :q10, :after => :current_question

state :q20, :after => :current_question

state :q30, :after => :current_question

event :next do

transitions :to => :q20, :from => :q10

transitions :to => :q30, :from => :q20

end

event :previous do

transitions :to => :q10, :from => :q20

transitions :to => :q20, :from => :q30

end

def current_question

@current_question ||= find_question(self.current_state)

end

private

def find_question(state)

Question.find_by_tag(state.to_s)

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Wizard/app/models/quiz.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=86

17. CREATING A WIZARD 87

We’ve added the acts_as_state_machine declaration, and set the initial

state to q10 (which is just a name). Then we define the names of our

three states and associate a method to call after transitioning into that

state. In this case, the current_question method will turn around and

query the database for the Question that has the same tag as the name

of the current state. This is the key that makes the correct question

pop up whenever a user hits the “Next” or “Previous” button. Then for

each event (next and previous), we describe the transitions based on the

current state.

Let’s play around in the console a bit to get a feel for what’s going on:

$ ruby script/console

>> quiz = Quiz.create

Notice that we didn’t call the new method on Quiz. We have to use the

create method in order for the acts_as_state_machine magic to kick in

and set the initial state properly. Let’s check that:

>> quiz.state

=> "q10"

Ok so far; that is indeed our first state. Let’s move to the next state

(which remember is the same thing as stepping to the next question).

To do that, we can use the next! method because we defined next as an

event:

>> quiz.next!

=> true

>> quiz.state

=> "q20"

Great, now let’s go backwards using the previous! method:

>> quiz.previous!

=> true

>> quiz.state

=> "q10"

Then if we fast forward to the end, we loop back on the last state:

>> quiz.next!

>> quiz.next!

>> quiz.next!

>> quiz.state

=> "q30"

Hey, that’s pretty neat! Next we need some questions. Quizzes are

more fun if we have different types of questions: short answers, true

or false, etc. Each of those requires a custom template to prompt the

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=87

17. CREATING A WIZARD 88

user accordingly. To keep things flexible, we’ll use single-table inher-

itance (STI) on the Question model. Then we can have each question

type provide its own template for viewing purposes, and the rest of the

system is none the wiser. We’ll just have short answer and true/false

questions for this quiz:

class ShortAnswerQuestion < Question

end

class TrueFalseQuestion < Question

end

Since we defined the Quiz class with states q10, q20 and q30, we need to

create records in the questions table that have these tag values. Let’s do

that from the console, too:

$ ruby script/console

>> ShortAnswerQuestion.create(:text => "What's your name?",

:tag => "q10")

>> TrueFalseQuestion.create(:text => "Do you like wasabi?",

:tag => "q20").

>> ShortAnswerQuestion.create(:text => "What do you like to drink?",

:tag => "q30")

Then over in a view helper we’ll figure out which question template to

use when showing a particular question. To keep things simple, we’ll

just use the convention of naming the template (we’ll use partials) based

on the class name of the current question:

Download Wizard/app/helpers/quizzes_helper.rb

module QuizzesHelper

def question_template(question)

"questions/#{question.class.name.underscore}"

end

end

Let’s go ahead and create the two partials that correspond to our two

question types. These need to go in the app/views/questions directory

according to our naming convention. Here’s what the partial for short

answer questions looks like:

Download Wizard/app/views/questions/_short_answer_question.html.erb

<label for="answer_value"><%= question.text %></label>

<%= text_field :answer, :value %>

And here’s the true/false question partial:

Download Wizard/app/views/questions/_true_false_question.html.erb

<label for="answer_value"><%= question.text %></label>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Wizard/app/helpers/quizzes_helper.rb
http://media.pragprog.com/titles/fr_arr/code/Wizard/app/views/questions/_short_answer_question.html.erb
http://media.pragprog.com/titles/fr_arr/code/Wizard/app/views/questions/_true_false_question.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=88

17. CREATING A WIZARD 89

<%= select :answer, :value,

{"Yes" => "true", "No" => "false"},

:selected => answer.value %>

The last piece to tie this all together is the QuizzesController, where all

the interesting stuff happens. Let’s generate it with four actions:

$ script/generate controller quizzes index new edit update

We’ll go with the RESTful flow in our forms, so we need to add this to

our config/routes.rb file:

map.resources :quizzes

We only need to be concerned with two actions: edit and update. The

edit action lets a user continue an existing quiz:

Download Wizard/app/controllers/quizzes_controller.rb

def edit

@quiz = Quiz.find(params[:id])

@answer = @quiz.answers.

find_by_question_id(@quiz.current_question.id) || Answer.new

end

The template for the edit action renders the partial for the current ques-

tion, handing it the question and the previous answer:

Download Wizard/app/views/quizzes/edit.html.erb

<% form_for(@quiz) do |f| -%>

<fieldset>

<%= render :partial => question_template(@quiz.current_question),

:locals => {

:question => @quiz.current_question,

:answer => @answer

} %>

</fieldset>

<%= hidden_field_tag :direction, "next!" %>

<hr/>

<table class="controls">

<tr>

<td>

<%= button_to "← Previous",

{:id => @quiz, :action => "update"},

{:method => :put,

:onclick => "$('direction').value = 'previous!';"} %>

</td>

<td>

<%= submit_tag "Next →" %>

</td>

</tr>

</table>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Wizard/app/controllers/quizzes_controller.rb
http://media.pragprog.com/titles/fr_arr/code/Wizard/app/views/quizzes/edit.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=89

17. CREATING A WIZARD 90

<% end -%>

We use a hidden field here to indicate which direction we’re going. Hit-

ting the “Next” button just posts to the update action which calls the

Quiz#next! method. The “Previous” button works slightly different: before

posting to update it does a switcheroo on the hidden field value so we’ll

end up transitioning back one state. Here’s the update action:

Download Wizard/app/controllers/quizzes_controller.rb

def update

@quiz = Quiz.find(params[:id])

@answer = @quiz.answers.find_by_question_id(@quiz.current_question)

if @answer

@answer.update_attribute(:value, params[:answer][:value])

else

@answer = Answer.new(:value => params[:answer][:value],

:question => @quiz.current_question)

@quiz.answers << @answer

end

@quiz.send(params[:direction])

redirect_to :action => :edit

end

Every time a user hits the “Previous” or “Next” button, they’ll trans-

parently cycle through the update action. Their answer gets updated (if

they’ve posted an answer before) or gets created (if they haven’t given

an answer yet). Then an event is fired—next! or previous! is called on

the quiz—and after the transition the quiz loads up the corresponding

question. Finally the action re-renders the edit template to show the

next question.

Now all we have to do is fire up our browser, create a new quiz, and

start stepping through the wizard!

Discussion

OK, but what if you’re not building an online quiz game? Instead, you

have something with a tad more states and transitions. All the more

reason to find the back of a napkin, draw your state transition dia-

gram, and start implementing it with acts_as_state_machine. Then walk

through your diagram using the console, and when you have it working

write some unit tests that give you automated examples. By breaking it

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Wizard/app/controllers/quizzes_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=90

17. CREATING A WIZARD 91

down this way, the final solution will likely be easier (and more elegant)

then you may have imagined.

It would be fairly easy to extend this example to handle other ques-

tion types, such as multiple choice questions, by defining new Ques-

tion subclasses and including a corresponding template in the questions

directory. You could also generalize the question template that’s used

by adding a view_template attribute to Question and allowing that field

value to override the default template name.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=91

Recipe 18

Updating Partial Resources

with Ajax

By David Heinemeier Hansson (http://loudthinking.com)

Thanks to David Heinemeier Hansson for the idea for this recipe.

Problem

You want to update certain attributes of a resource with Ajax, such as

toggling the value of one field. How do you handle it in a RESTful way?

Solution

Our dear readers often find mistakes or have suggestions, so let’s say

we have an interface for submitting a book erratum.

If an author is logged in, he sees a checkbox for marking each erratum

as being fixed. (It’s good fun, and a great relief from writer’s block.)

When he checks off an erratum, we want to update the Errata resource’s

fixed attribute. Rather than creating a new controller action just for this

case, we can piggy-back on the standard update action.

Here’s the check box part of each row in the list of errata:

Download AjaxRestToggle/app/views/errata/index.html.erb

<%= check_box_tag 'erratum[fixed]', "1", erratum.fixed,

:onclick => toggle_value(erratum) %>

<%= image_tag 'spinner.gif', :id => "spinner-#{erratum.id}",

:style => 'display: none' %>

Prepared exclusively for Jeanne McDade

http://loudthinking.com
http://media.pragprog.com/titles/fr_arr/code/AjaxRestToggle/app/views/errata/index.html.erb

18. UPDATING PARTIAL RESOURCES WITH AJAX 93

When the check box is clicked, it calls the toggle_value helper method:

Download AjaxRestToggle/app/helpers/application_helper.rb

def toggle_value(object)

remote_function(:url => url_for(object),

:method => :put,

:before => "Element.show('spinner-#{object.id}')",

:complete => "Element.hide('spinner-#{object.id}')",

:with => "this.name + '=' + this.checked")

end

This code uses remote_function to fire off an asynchronous request to the

update action of the given resource. While that’s happening we show

the spinner to let the tireless author know that something is happe-

nening. In this case the resource is an Erratum object, but the helper is

generic—it will take any resource and use the check box name in the

enclosing template. Here’s what the actual HTTP request looks like for

an erratum, for example:

PUT/errata/4?erratum[fixed]=1

It’s a purely RESTful URL, and the advantage is that updating a single

attribute (fixed) just piggybacks onto the full update action. So all we

need to do to support the single-attribute update is add a new format.js

block to respond_to to let the JavaScript request know that the update

was successful:

Download AjaxRestToggle/app/controllers/errata_controller.rb

def update

@erratum = Erratum.find(params[:id])

respond_to do |format|

if @erratum.update_attributes(params[:erratum])

flash[:notice] = 'Erratum was successfully updated.'

format.html { redirect_to(@erratum) }

format.xml { head :ok }

format.js { head :ok }

else

format.html { render :action => "edit" }

format.xml { render :xml => @erratum.errors,

:status => :unprocessable_entity }

format.js { head :unprocessable_entity }

end

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/AjaxRestToggle/app/helpers/application_helper.rb
PUT /errata/4?erratum[fixed]=1
http://media.pragprog.com/titles/fr_arr/code/AjaxRestToggle/app/controllers/errata_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=93

18. UPDATING PARTIAL RESOURCES WITH AJAX 94

Discussion

In general when you’re toggling attributes with Ajax, you don’t care

about the response. In those cases this technique works a treat. If the

update is dependent on validation, then your best bet is to use a full

form and a synchronous request.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=94

Recipe 19

Uploading Images and

Creating Thumbnails

Problem

You want to let users upload images (or any file) and generate a variety

of thumbnails for use around your site.

Ingredients

• Rick Olson’s attachment_fu plugin:

$ script/plugin install ←֓

http://svn.techno-weenie.net/projects/plugins/attachment_fu/

• Optionally, the AWS:S3 gem:

$ gem install aws-s3

• One of the following image processing libraries:

– ImageScience:16 A light inline-Ruby library that only resizes

images. (Wraps the FreeImage library.)

– RMagick:17 The grand-daddy, both in terms of advanced image

processing features and memory usage. (Wraps the ImageMag-

ick library.)

– minimagick:18 It’s much easier on memory than RMagick because

it runs the ImageMagick command in a shell.

Image processing of this kind is best handled by native code. This

means you end up either building a library for your operating system or

downloading a pre-built library specific to your operating system. Then

you install a Ruby library (gem) that wraps the image processing library

with a Ruby API. If you already have one of these installed, go with it.

16. http://seattlerb.rubyforge.org/ImageScience.html

17. http://rmagick.rubyforge.org/

18. http://rubyforge.org/projects/mini-magick/

Prepared exclusively for Jeanne McDade

http://seattlerb.rubyforge.org/ImageScience.html
http://rmagick.rubyforge.org/
http://rubyforge.org/projects/mini-magick/

19. UPLOADING IMAGES AND CREATING THUMBNAILS 96

Solution

Let’s say we’re building an online jukebox and we need to upload covers

for the albums. Thinking about the database first, we could try to cram

all the album and cover information into one table. But that can get

messy, so we’ll split them up into two tables. First, we need an Album

model with a few simple attributes:

$ script/generate scaffold album title:string artist:string

$ rake db:migrate

That gives us everything we need to administer albums. But an album

also has one cover:

class Album < ActiveRecord::Base

has_one :cover

end

So next we need a database table to store information about the cover:

it’s size, where it lives, etc. We won’t actually store the cover image itself

in the database, just its meta-data. Here’s the migration for the Cover

model:

create_table :covers do |t|

t.integer :album_id, :parent_id, :size, :width, :height

t.string :content_type, :filename, :thumbnail

end

These database columns are required by the attachment_fu plugin. Again,

it’s just the information about the cover, not the actual cover image.

When a cover image is uploaded, we need to record its location in the

covers table and then store the data somewhere. While we’re at it, we’d

like to generate a few cover image thumbnails to use across our site.

Here’s where the attachment_fu plugin really shines. Rather than grov-

eling around at the API level of whatever Ruby image library we have

installed, we can declare how we want files to get processed and let

attachment_fu work out the details. Here’s all we need in our Cover

model:

class Cover < ActiveRecord::Base

belongs_to :album

has_attachment :content_type => :image,

:storage => :file_system,

:max_size => 500.kilobytes,

:resize_to => '384x256>',

:processor => "ImageScience",

:thumbnails => {

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=96

19. UPLOADING IMAGES AND CREATING THUMBNAILS 97

:large => '96x96>',

:medium => '64x64>',

:small => '48x48>'

}

validates_as_attachment

end

In the has_attachment method we tell attachment_fu what to do with the

uploaded image. There’s a lot packed in here:

• :content_type specifies the content types we allow. In this case,

using :image allows all standard image types.

• :storage sets where the actual cover image data is stored. So in

truth we could have stored the covers in the database (:db_file), but

the file system is easier to manage. Another option is Amazon’s S3

service, which we’ll look at a bit later.

• :max_size is, not surprisingly, the maximum size allowed. It’s always

good to set a limit on just how much data you want your app to

take in (the default is 1 megabyte).

• :resize_to is either an array of width/height values (for example,

:resize_to => [384, 286]) or a geometry string for resizing the image.

Geometry strings are more flexible, but not supported by all image

processors. In this case, by using the > symbol at the end, we’re

saying that the image should be resized to 384x286 only if the

width or height exceeds those dimensions. Otherwise the image is

not resized.

• :processor sets what image processor to use: ImageScience, Rmag-

ick, or MiniMagick. As we haven’t specified one, attachment_fu will

use whichever library we have installed.

• :thumbnails is a hash of thumbnail names and resizing options.

Thumbnails won’t be generated if you leave off this option, and you

can generate as many thumbnails as you like simply by adding

arbitrary names and sizes to the hash.

After configuring how the image gets processes, we call validates_as_attachment

to prevent image sizes out of range from being saved. (They’re still

uploaded into memory, mind you.) As well, because we set an image

content type, WinZip files won’t be welcome, for example.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=97

19. UPLOADING IMAGES AND CREATING THUMBNAILS 98

OK, now that we have the models created, we turn our attention to the

form used to upload the cover image when we create a new Album:

Download FileUploadFu/app/views/albums/new.html.erb

<%= error_messages_for :album %>

<% form_for(@album, :html => { :multipart => true }) do |f| %>

<p>

<%= label :album, :title %>

<%= f.text_field :title %>

</p>

<p>

<%= label :album, :artist %>

<%= f.text_field :artist %>

</p>

<p>

<%= label :album, :cover %>

<%= f.file_field :uploaded_cover_data %>

We accept JPEG, GIF, or PNG files up to 500 KB.

</p>

<p>

<%= f.submit "Create" %>

</p>

<% end %>

It’s a fairly standard form, but it has two subtle and important bits.

First, to allow the form to accept files as POST data, the form_for includes

the :multipart => true option. (If you forget to add this, you’re in for a long

afternoon of debugging.)

Second, the form uses the file_field form helper which generates a “Choose

File” button on the form. In this case, the name of the file input field

will be album[:uploaded_cover_data]. That means if we were to POST the

form, Active Record would expect to set the cover image data into an

Album attribute called uploaded_cover_data. There’s just one problem:

we don’t have a column for that in our albums table. And in fact we

don’t want the image data stored in the albums table. Instead, we’ll just

create a virtual uploaded_cover_data attribute in our Album model:

class Album < ActiveRecord::Base

has_one :cover

attr_accessor :uploaded_cover_data

end

At this point we can upload an image from the form, but it won’t get

stored. We haven’t done anything with the uploaded cover data. So the

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/FileUploadFu/app/views/albums/new.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=98

19. UPLOADING IMAGES AND CREATING THUMBNAILS 99

next step is use that cover image data to create a Cover object and

associate it with the Album being created. The Album already has the

data in the virtual attribute we just created, so we’ll let the Album do all

the grunt work. This keeps the create action of the controller simple:

Download FileUploadFu/app/controllers/albums_controller.rb

def create

@album = Album.new(params[:album])

if @album.save_with_cover

flash[:notice] = 'Album was successfully created.'

redirect_to(@album)

else

render :action => "new"

end

end

Notice we can’t just call @album.save here as this would only save the

album information. Instead, we’ve created a save_with_cover method

that saves both the album and the cover in a transaction:

Download FileUploadFu/app/models/album.rb

def save_with_cover

cover = Cover.new

begin

self.transaction do

if uploaded_cover_data && uploaded_cover_data.size > 0

cover.uploaded_data = uploaded_cover_data

cover.thumbnails.clear

cover.save!

self.cover = cover

end

save!

end

rescue

if cover.errors.on(:size)

errors.add_to_base("Uploaded image is too big (500-KB max).")

end

if cover.errors.on(:content_type)

errors.add_to_base("Uploaded image content-type is not valid.")

end

false

end

end

OK, so now we’re off to the races: we select a cover file using the “Choose

File” button on the form, the cover image is uploaded to a file on our

server, and the file metadata is stored in the covers database table. We

end up with four rows in the covers table: one for the resized original

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/FileUploadFu/app/controllers/albums_controller.rb
http://media.pragprog.com/titles/fr_arr/code/FileUploadFu/app/models/album.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=99

19. UPLOADING IMAGES AND CREATING THUMBNAILS 100

(parent) image and one for each of the three thumbnails. The thumb-

nails have their parent_id column set to the primary key of the cover

from which they were created.

Each image also has a base filename recorded in the covers table. The

public_filename method uses this information to give us the public path

to the resized original file, or the thumbnail if passed the name of the

thumbnail. Let’s inspect our images in the console:

$ ruby script/console

>> c = Cover.find :first

=> #<Cover id: 1, album_id: 1, parent_id: nil, size: 72620, width: 201,

height: 201, content_type: "image/png",

filename: "foo_fighters.png", thumbnail: nil>

>> c.public_filename

=> "/covers/0000/0001/foo_fighters.png"

>> c.public_filename(:small)

=> "/covers/0000/0001/foo_fighters_small.png"

>> c.public_filename(:medium)

=> "/covers/0000/0001/foo_fighters_medium.png"

>> c.public_filename(:large)

=> "/covers/0000/0001/foo_fighters_large.png"

Since we’re using the filesystem as storage, our cover image files are

stored relative to the $RAILS_ROOT/public directory on our server.19 The

thumbnail files have a suffix that corresponds to the name we used in

the :thumbnails hash.

Finally, let’s write a view helper so we can easily show covers in various

sizes (and linked to the full-size image) around our jukebox site:

Download FileUploadFu/app/helpers/albums_helper.rb

module AlbumsHelper

def cover_for(album, size = :medium)

if album.cover

cover_image = album.cover.public_filename(size)

link_to image_tag(cover_image), album.cover.public_filename

else

image_tag("blank-cover-#{size}.png")

end

end

end

Here’s the template for listing all the albums and their covers:

19. The default path prefix for the file system is public/#{table_name}. This can be changed

by adding a :path_prefix option to the has_attachment method.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/FileUploadFu/app/helpers/albums_helper.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=100

19. UPLOADING IMAGES AND CREATING THUMBNAILS 101

Download FileUploadFu/app/views/albums/index.html.erb

<table>

<% for album in @albums -%>

<tr>

<td><%= cover_for(album, :large) %></td>

<td>

<%= link_to album.title, album %>

by <%= h album.artist %>

</td>

</tr>

<% end -%>

</table>

Discussion

One of the big benefits of using attachment_fu is the choice of backend

storage systems. Let’s say, for example, we want to store all of our cov-

ers on Amazon’s S3 Web Service.20 First, we simply change the :storage

option on the Cover model to :s3. Then we edit the $RAILS_ROOT/config/amazon_s3.yml

configuration file to include our S3 account information:

Download FileUploadFu/config/amazon_s3.yml

development:

bucket_name: your_bucket_name

access_key_id: your_access_key_id

secret_access_key: your_secret_access_key

test:

bucket_name: appname_test

access_key_id:

secret_access_key:

production:

bucket_name: appname

access_key_id:

secret_access_key:

That’s all there is to it! Upload a new cover, and you’ll see that the image

link on the albums listing points to your image hosted on the S3 server.

Also See

Sorbet 57, Preserving Files Between Deployments, on page 249 describes

how to keep uploaded images stored on the file system from disappear-

ing between deployments.

20. http://aws.amazon.com/s3

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/FileUploadFu/app/views/albums/index.html.erb
http://media.pragprog.com/titles/fr_arr/code/FileUploadFu/config/amazon_s3.yml
http://aws.amazon.com/s3
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=101

Recipe 20

Decouple Your JavaScript

with Low Pro

By Adam Keys (http://therealadam.com)

Adam Keys is a connoisseur of code, dachshunds and existentialism jokes.

Problem

Rails gives you some great shortcuts that make building interactive web

applications with AJAX really easy. However, the Rails AJAX helpers

leave something to be desired when it comes to keeping the JavaScript

unobtrusive. How do you structure your JavaScript logic and easily

apply it to your pages, and at the same time support users who have

JavaScript turned off?

Ingredients

• The Low Pro21 JavaScript library (lowpro.js) in your public/javascripts

directory.

Solution

It turns out that abandoning Rails’ AJAX helpers in favor of using

JavaScript directly is pretty easy. Doubly so if we use Dan Webb’s fan-

tastic Low Pro library. Low Pro lets us write JavaScript behaviors that

handle the various events an HTML element can emit—events such as

onclick, keydown or onsubmit. We can then bind those behaviors to spe-

cific HTML elements in our page using CSS selectors. It’s a delightful

way to incrementally add in the interactive bits of our application.

Let’s say we’ve built a lovely little Rails application for tracking our

friends and all their contact info. It doesn’t have any JavaScript and

thus feels sort of bland, so let’s add some fanciness to it.

Before we get started, we need to include the Low Pro JavaScript library.

The trick here is that it must be loaded before our application-specific

JavaScript but after the Prototype library. For this reason, we can’t use

the default JavaScript includes. Instead, we need something like this:

21. http://lowprojs.com

Prepared exclusively for Jeanne McDade

http://therealadam.com
http://lowprojs.com

20. DECOUPLE YOUR JAVASCRIPT WITH LOW PRO 103

Download Lowpro/app/views/layouts/application.html.erb

<%= javascript_include_tag 'prototype', 'effects',

'lowpro', 'application' %>

The first thing we’ll do is take the somewhat boring index page and

add some interactivity to it. When we list out our friends, the generated

HTML looks like this:

<ul class="people_list">

Adam Keys

http://therealadam.com

We want to change this so that the person’s URL is only shown when we

mouse over the person. Now we could add the JavaScript code directly

into the HTML, but we’d rather treat the JavaScript as a separate layer

on top of our already working application. We’re already giving our

HTML elements id and class attributes, so we can start attaching behav-

iors to them.

To do that, first we add a simple Low Pro behavior in our application.js

file:

var PeoplePreview = Behavior.create({

initialize: function() {

this.element.down('.preview').hide();

},

onmouseover: function() {

this.element.down('.preview').show();

},

onmouseout: function() {

this.element.down('.preview').hide();

}

});

Let’s take this apart. We’re creating a Low Pro behavior by calling Behav-

ior.create. Think of this like a method that creates an object for us, as

that is exactly what it does. The methods on the object we pass can

have any name we like, but since we’re writing a behavior, we should

probably throw in some event handlers like onmouseover and onmouse-

out. If we specify an initialize method, it gets called when the behavior is

attached to an actual element.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Lowpro/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=103

20. DECOUPLE YOUR JAVASCRIPT WITH LOW PRO 104

Within the methods of our behavior, this refers to our behavior object.

The Low Pro library arranges for this.element to refer to the element

which this behavior was attached to. With the element in hand, we can

proceed to do anything we can do in Prototype, such as calling hide() or

show() on an element.

Then we attach the behavior to all the HTML elements matching the

CSS selector .people_list li like so:

Event.addBehavior({

'.people_list li': PeoplePreview

});

The behavior is attached as soon as the DOM is loaded, unobtrusively,

so there’s no need to call this JavaScript from our views.

Before we proceed, let’s clean up what we’ve already got. Instead of

inlining the CSS class to use for previews, we can pass it in to the

behavior when it’s created. We can then hide the incantation for finding

it behind an accessor so our code is nice and DRY. Here’s the cleaned

up version:

Download Lowpro/public/javascripts/application.js

var PeoplePreview = Behavior.create({

preview: null,

initialize: function(preview_selector) {

this.preview = this.element.down(preview_selector);

this.preview.hide();

},

onmouseover: function() {

this.preview.show();

},

onmouseout: function() {

this.preview.hide();

}

});

It’s four lines longer, but half of that is whitespace. Further, changing

the code will prove much easier in the future. Note that we can create

instance variables if we wish and that arguments to PeoplePreview() are

passed into the behavior when it’s created.

Now let’s make deleting a person more interesting. What we’ll do is

intercept clicks on the delete button and prompt the user for confirma-

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Lowpro/public/javascripts/application.js
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=104

20. DECOUPLE YOUR JAVASCRIPT WITH LOW PRO 105

tion. To the user, this will look just like Rails’ built-in helper for con-

firming an action. However, our implementation won’t insert JavaScript

into the HTML we render, giving us a nice little unobtrusive implemen-

tation.

First we’ll change our view to render our own form instead of using the

button_to helper. Our delete button now looks like this:

Download Lowpro/app/views/people/_person.html.erb

<% form_for person,

:html => {:class => dom_class(person, 'delete'),

:method => :delete} do |f| -%>

<p>

<%= f.submit "Delete #{person.name}" %>

</p>

<% end -%>

Note that we use the dom_class helper to generate a delete_person class

for our delete form. We also have to set the HTML method to :delete to

let Rails know we want to emulate a DELETE request. Now that our form

is in place, here’s the behavior we’ll attach to it:

Download Lowpro/public/javascripts/application.js

var DeleteConfirmation = Behavior.create({

onsubmit: function(evt) {

if (confirm('Really delete this item?')) {

return true; // Allow the delete

} else {

evt.stop();

return false;

}

}

});

This behavior is a little different from our first in that we’re declaring

our handler, onsubmit, as taking an event parameter. (All event han-

dlers are passed this object, we just didn’t need it in the first example.)

This object contains information on the HTML element that the event

occurred on, mouse coordinates at the time of the event, any key-press

events and other information. Prototype kindly wraps this all up for

us, so we can just treat it as an Event object, rather than the various

unfriendly objects various browsers would pass to us.

The crux of our behavior is prompting the user to see if they really want

to delete this person. If they click OK, our behavior returns true and the

browser will continue to submit the form. However, if the user clicks

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Lowpro/app/views/people/_person.html.erb
http://media.pragprog.com/titles/fr_arr/code/Lowpro/public/javascripts/application.js
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=105

20. DECOUPLE YOUR JAVASCRIPT WITH LOW PRO 106

cancel, we stop the event by calling evt.stop() and returning false from

our handler. The form is never submitted and the user’s data is safe!

Then we attach this behavior to the entire form. That way we can catch

submit events generated by mouse clicks and keyboard events (such

as the user tabbing through the page and hitting enter on the submit

button):

Event.addBehavior({

'.people_list li': PeoplePreview('.preview'),

'.delete_person': DeleteConfirmation

});

Finally, let’s add some unobtrusive AJAX. Right now when we edit a

person it triggers a full page reload to render the form. Now we’d like

to change the Edit link to issue an AJAX request which slips the edit

form into the page behind the scenes. That’s where Low Pro’s Remote

behavior comes in. Using Remote, we just need to specify which links

and forms are “remote”. The behavior takes care of performing the AJAX

requests for us.

Let’s see how this works out. First, the edit link in question:

Download Lowpro/app/views/people/_person.html.erb

<%= link_to "Edit", edit_person_path(person),

:class => dom_class(person, 'edit') %>

We want to make that link a remote AJAX call, if the user has JavaScript

turned on. To do so, we just add a behavior rule that matches the link

with the edit_person class, like so:

Download Lowpro/public/javascripts/application.js

Event.addBehavior.reassignAfterAjax = true;

Event.addBehavior({

'.people_list li': PeoplePreview('.preview'),

'.delete_person': DeleteConfirmation,

'.edit_person': Remote

});

The last rule matches our edit link and attaches the Remote behavior to

it. Now, when it’s clicked, a new Prototype Ajax.Request object is created

which requests the URL specified by our link, /people/1/edit for exam-

ple. We can then use RJS to modify the page, in this case placing an

edit form in place of the display markup:

Download Lowpro/app/views/people/edit.rjs

page[dom_id(@person)].replace_html :partial => "person_form", :object => @person

page[dom_id(@person, 'edit')].visual_effect :highlight

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Lowpro/app/views/people/_person.html.erb
http://media.pragprog.com/titles/fr_arr/code/Lowpro/public/javascripts/application.js
/people/1/edit
http://media.pragprog.com/titles/fr_arr/code/Lowpro/app/views/people/edit.rjs
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=106

20. DECOUPLE YOUR JAVASCRIPT WITH LOW PRO 107

So now our edit form is in place. When the user submits it, we’d like

to use AJAX to send the request and then replace the form with the

updated person. The great thing about Remote is that it’s really a helper

on top of Remote.Link and Remote.Form. So you can attach Remote to a

link or a form and it will do the right thing.

Since the form we insert into the page has the same class as our

link, we don’t need another rule to add the behavior. We do however,

need to tell Low Pro to reload all its behavior rules after every AJAX

request. We do this before we declare our behavior rules by setting

Event.addBehavior.reassignAfterAjax to true. For performance reasons, the

author of Low Pro doesn’t recommend this for all applications. However,

for our little application, it’s the simplest way to accomplish what we

need.

Now our address book is a lot more interesting, and it still works

great for folks who don’t have JavaScript enabled. Plus, we don’t have

JavaScript lurking in our HTML, saving us from long nights tracking

down logic. Low Pro makes all that easy. Behaviors give you a great

way to get everything working without JavaScript first, and then pro-

gressively enhance the user experience with AJAX and other JavaScript

behaviors.

Also See

We didn’t cover things like building composed behaviors or some of the

other interesting behaviors that ship with LowPro. If you’re itching to

learn more, get ’ye to http://lowprojs.com and dig in!

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://lowprojs.com
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=107

Part V

Design Recipes

108
Prepared exclusively for Jeanne McDade

Recipe 21

Freshening Up Your Models

With Scope

By Dan Manges (http://www.dcmanges.com)

Dan Manges is a passionate programmer who focuses on Ruby and Rails development.

He enjoys giving back to the community by working on open source projects. After suc-

cessfully bringing Rails into the enterprise at JPMorgan Chase, he is now a developer with

ThoughtWorks.

Problem

You need to use a similar set of database query conditions in multiple

scenarios—and even mix and match them with other conditions—all

without creating a duplication nightmare.

Ingredients

• The scope_out plugin22:

$ script/plugin install http://scope-out-rails.googlecode.com/svn/trunk

Solution

Let’s say we’re designing an online newspaper system. Reporters draft

articles and can schedule them to be publicly viewable later. So we need

to make sure only the finished and ready-for-publish articles are shown

on the site. Clearly this leads to a maintenance headache if we try to

filter articles in the controller:

class ArticlesController < ApplicationController

def index

@articles = Article.find(:all,

:conditions => ["draft = ? AND publish_date <= ?",

false, Time.now])

end

def show

@article = Article.find(params[:id],

:conditions => ["draft = ? AND publish_date <= ?",

false, Time.now])

22. http://code.google.com/p/scope-out-rails/

Prepared exclusively for Jeanne McDade

http://www.dcmanges.com
http://code.google.com/p/scope-out-rails/

21. FRESHENING UP YOUR MODELS WITH SCOPE 110

end

end

So the first step toward removing the duplication is to push the condi-

tions back into the Article model where they belong. After all, the Article

model is the sole authority on what it means for an article to be publicly

viewable. This is called encapsulation and it’s our best defense against

brittle (and ugly) code. Here’s what our refactored Article model looks

like:

class Article < ActiveRecord::Base

def self.find_all_publicly_viewable

find(:all, :conditions => ["draft = ? AND publish_date <= ?",

false, Time.now])

end

def self.find_publicly_viewable(id)

find(id, :conditions => ["draft = ? AND publish_date <= ?",

false, Time.now])

end

end

All we did was move code around—the details are now hidden behind

custom finder methods. It doesn’t seem like much progress, but it

cleans up our controller considerably:

class ArticlesController < ApplicationController

def index

@articles = Article.find_all_publicly_viewable

end

def show

@article = Article.find_publicly_viewable(params[:id])

end

end

That’s a good start. However, we can do better, and we will! Our Article

model still has duplication in the :conditions option. Also, our custom

finder methods are currently limited in that we can’t pass in additional

find options for ordering, limiting, and so on.

The next refactoring step is to use with_scope to surround a single find

method:

class Article < ActiveRecord::Base

def self.find_publicly_viewable(*args)

with_scope(:find =>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=110

21. FRESHENING UP YOUR MODELS WITH SCOPE 111

{:conditions => ["draft = ? AND publish_date <= ?",

false, Time.now]}) do

find(*args)

end

end

end

The with_scope method simply uses the options passed to it to set the

scope of the database operations within its block. In other words, it

scopes the find operation to all publicly viewable articles. That also

means we can pass additional options into our custom finder without

bothering to merge our options with the default options. For example,

now our controller can use the same custom finder, but with different

options depending on the action:

class ArticlesController < ApplicationController

def index

@articles = Article.find_publicly_viewable(:all,

:order => 'publish_date DESC')

end

def show

@article = Article.find_publicly_viewable(params[:id])

end

end

Now let’s suppose we need to get a count of the total number of publicly

viewable articles or calculate the average number of pages (again, just

for publicly viewable articles). The find method in the block of with_scope

won’t work. Instead, we need to extract the with_scope part of the finder

method into its own method so we can reuse it. Here’s the revised

model:

class Article < ActiveRecord::Base

def self.find_publicly_viewable(*args)

with_publicly_viewable { find(*args) }

end

def self.calculate_publicly_viewable(*args)

with_publicly_viewable { calculate(*args) }

end

def self.with_publicly_viewable

with_scope(:find =>

{:conditions => ["draft = ? AND publish_date <= ?",

false, Time.now]}) do

yield

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=111

21. FRESHENING UP YOUR MODELS WITH SCOPE 112

end

end

end

The with_publicly_viewable method just sets the scope, then yields con-

trol over to a block. Inside the block we can run a find or a calculate

method and know that the resulting database operations are properly

scoped. So to get a count or average of all publicly viewable articles,

we’d use:

Article.calculate_publicly_viewable(:count, :all)

Article.calculate_publicly_viewable(:avg, :pages)

We can also stack with_scope blocks to mix and match conditions. For

example, let’s say we have a scope for articles that are premium (you

have to log in to read them) in a method called with_premium:

def self.with_premium

with_scope(:find => {:conditions => {:premium => true}}) do

yield

end

end

Then we could combine the scope to define publicly viewable premium

articles like so:

def self.find_publicly_viewable_premium_articles(*args)

with_publicly_viewable do

with_premium do

find(*args)

end

end

end

ActiveRecord will continue merging conditions throughout the chain

of with_scope blocks. In other words, if we’re applying more than one

with_scope block and specifying an option in the find call that was also

in a with_scope block, the value in the find wins. All options can be

overwritten except for the :conditions option, which merges using an AND

operator.

This is a major improvement over the original code! Indeed, it’s about

as DRY as we can make our model using standard Rails facilities. How-

ever, we can further simplify the definition of these scopes using the

scope_out plugin. Here’s our revised model using scope_out:

class Article < ActiveRecord::Base

scope_out :publicly_viewable do

{ :conditions => ["draft = ? AND publish_date <= ?", false, Time.now] }

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=112

21. FRESHENING UP YOUR MODELS WITH SCOPE 113

end

scope_out :premium

same as: scope_out :premium, :conditions => {:premium => true}

combined_scope :publicly_viewable_premium,

[:publicly_viewable, :premium]

end

The publicly_viewable scope needs to be defined in a block due to the

dynamic time. If defined without the block, the time would always be

set to the time when the Article class was loaded.

After defining a scope, the plugin automatically creates the with_*, find_*,

and calculate_* methods. This gives us all the scoping we had before,

plus a few handy methods. Here are some examples:

>> Article.find_publicly_viewable(:all)

=> [#<Article id: 3,...]

>> Article.find_publicly_viewable_by_title('The Title')

=> #<Article id: 3,...

>> Article.find_publicly_viewable_premium(:all)

=> [#<Article id: 3,...]

>> Article.calculate_publicly_viewable_premium(:count, :all)

=> 6

Fresh, clean and (most important) easy to maintain.

Discussion

When defining class-level finder methods, they also work through asso-

ciation proxies. For example, let’s say we have a Reporter model that

has_many :articles. With the scopes defined in this recipe, we could do:

Reporter.find_by_name('Dan').articles.find_publicly_viewable(:all)

That functionality works with stock Rails; it is not added by the scope_out

plugin.

It may be tempting to use with_scope in an around_filter in your controller,

or override the default find to apply this scope. However, these tech-

niques are not recommended as they hide your scope and add unex-

pected behavior to a method familiar to all Rails developers.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=113

21. FRESHENING UP YOUR MODELS WITH SCOPE 114

Also See

• Thanks to Chris Wanstrath for the blog post "with_scope with

scope". 23

23. http://errtheblog.com/post/41

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://errtheblog.com/post/41
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=114

Recipe 22

Keeping Forms Dry and

Flexible

By Mike Mangino (http://www.elevatedrails.com)

Mike Mangino is the founder of Elevated Rails (http://www.elevatedrails.com). He lives in Chicago

with his wife Jen and their two Samoyeds.

Problem

Your non-view code is DRY and beautiful, but you cringe every time you

look at your forms. You have variations of the same few lines all over

the place. You want to move your forms to a standards-based layout—

and perhaps even change the layout in one place later—but you can’t

stand the thought of changing all that code.

Solution

It’s quick and painless to DRY up our forms using a custom form

builder, and get lots of other goodies along the way. It turns out we’ve

been using a form builder all along, without even knowing it. Here’s

one:

Download DryUpYourForms/app/views/people/new.html.erb

<% form_for(@person) do |f| -%>

<p>

<%= label :person, :first_name %>

<%= f.text_field :first_name %>

</p>

<p>

<%= label :person, :last_name %>

<%= f.text_field :last_name %>

</p>

<p>

<%= label :person, :bio %>

<%= f.text_area :bio %>

</p>

<p>

<%= f.submit 'Create' %>

</p>

<% end -%>

The f block parameter that form_for yields is a FormBuilder instance. The

default builder doesn’t do very much, but it does let us skip using the

Prepared exclusively for Jeanne McDade

http://www.elevatedrails.com
http:// www.elevatedrails.com
http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/app/views/people/new.html.erb

22. KEEPING FORMS DRY AND FLEXIBLE 116

@person object in every form field. Some duplication has been removed,

but there’s still quite a bit left.

Let’s start drying this up by creating a custom FormBuilder to evaporate

all those label and paragraph tags. Here’s a simple implementation:

Download DryUpYourForms/lib/label_form_builder.rb

class LabelFormBuilder < ActionView::Helpers::FormBuilder

helpers = field_helpers +

%w(date_select datetime_select time_select) -

%w(hidden_field label fields_for)

helpers.each do |name|

define_method(name) do |field, *args|

options = args.last.is_a?(Hash) ? args.pop : {}

@template.content_tag(:p, label(field) +

super(field, options))

end

end

end

This isn’t much code, but it does a lot for us. First and foremost, form

builders are subclasses of ActionView::Helpers::FormBuilder. This means

that our form builder already knows how to create the standard form

elements (input fields, for example). We just want to wrap each stan-

dard element with a paragraph and add a label.

The code starts out by building up the helpers variable with the names of

form helpers we want to decorate: the default form helpers, plus a few

that aren’t included in the defaults, and minus a few that don’t need

labels. Then we loop through the helper names and use define_method

to create a method for each one. If we wanted to define one of these

methods explicitly, it would look like this:

def text_field(field, *args)

@template.content_tag(:p, label(field) + super)

end

The @template variable inside our form builder is a reference to the

view context in which a form element is being executed. Calling the

content_tag method on the template just slaps in the content (our label

and input field) surrounded by a tag (the paragraph).

The label method used here is slightly different than the one we used

in our original form. Specifically, this version of label doesn’t need the

object because the form builder already has a reference to the object

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/lib/label_form_builder.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=116

22. KEEPING FORMS DRY AND FLEXIBLE 117

instance that was passed to the form_for method (the @person). Simply

by giving it the field, it’ll generate the label tag with an appropriate for

attribute (person_first_name, for example). So to summarize, we’re wrap-

ping each form element in a p tag and creating an appropriately-named

label tag for it.

Now we can reduce our original form to this:

Download DryUpYourForms/app/views/people/new.html.erb

<% form_for(@person, :builder => LabelFormBuilder) do |f| -%>

<%= f.text_field :first_name %>

<%= f.text_field :last_name %>

<%= f.text_area :bio %>

<%= f.submit 'Create' %>

<% end -%>

That’s definitely an improvement, but we lost some flexibility. It would

be nice if we could override the field labels, for instance. While we’re at

it, we might as well add better highlighting of fields and error messages.

To do that, let’s leave our LabelFormBuilder and create a new ErrorHandling-

FormBuilder:

Download DryUpYourForms/lib/error_handling_form_builder.rb

class ErrorHandlingFormBuilder < ActionView::Helpers::FormBuilder

helpers = field_helpers +

%w(date_select datetime_select time_select collection_select) -

%w(label fields_for)

helpers.each do |name|

define_method name do |field, *args|

options = args.detect {|argument| argument.is_a?(Hash)} || {}

build_shell(field, options) do

super

end

end

end

def build_shell(field, options)

@template.capture do

locals = {

:element => yield,

:label => label(field, options[:label])

}

if has_errors_on?(field)

locals.merge!(:error => error_message(field, options))

@template.render :partial => 'forms/field_with_errors',

:locals => locals

else

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/app/views/people/new.html.erb
http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/lib/error_handling_form_builder.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=117

22. KEEPING FORMS DRY AND FLEXIBLE 118

@template.render :partial => 'forms/field',

:locals => locals

end

end

end

def error_message(field, options)

if has_errors_on?(field)

errors = object.errors.on(field)

errors.is_a?(Array) ? errors.to_sentence : errors

else

''

end

end

def has_errors_on?(field)

!(object.nil? || object.errors.on(field).blank?)

end

end

Here we see our friend @template again. Using render, we render one of

two templates depending on whether the field has errors. Due to the

way we’re using @template, instance variables won’t be passed to the

templates. So we have to use the locals hash to pass in the options. The

result of rendering the template is captured in the template.

This version is quite an improvement now that we’ve moved our pre-

sentation into templates where it belongs. Now our form handling logic

is separate from the layout and style of the views. Inside our form field

template we then access the local variables:

Download DryUpYourForms/app/views/forms/_field.html.erb

<p>

<%= label %>

<%= element %>

</p>

The template for a form element with errors is similar, but includes the

error below each form element and a CSS class for painting it a jarring

color:

Download DryUpYourForms/app/views/forms/_field_with_errors.html.erb

<p>

<%= label %>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/app/views/forms/_field.html.erb
http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/app/views/forms/_field_with_errors.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=118

22. KEEPING FORMS DRY AND FLEXIBLE 119

<%= element %>

<%= error %>

</p>

Now that our forms are nice and DRY, let’s clean up having to con-

stantly specify a :builder parameter when calling form_for. To do that, we

just need a helper method that automatically adds the builder option

for us:

Download DryUpYourForms/app/helpers/application_helper.rb

def error_handling_form_for(record_or_name_or_array, *args, &proc)

options = args.detect { |argument| argument.is_a?(Hash) }

if options.nil?

options = {:builder => ErrorHandlingFormBuilder}

args << options

end

options[:builder] = ErrorHandlingFormBuilder unless options.nil?

form_for(record_or_name_or_array, *args, &proc)

end

Whew, it took a while to get here, but the reward is a bone-dry form:

Download DryUpYourForms/app/views/people/new.html.erb

<% error_handling_form_for(@person) do |f| -%>

<%= f.text_field :first_name %>

<%= f.text_field :last_name, :label => 'Family Name' %>

<%= f.text_area :bio %>

<%= f.submit 'Create' %>

<% end -%>

The internals of a form builder can feel really messy. It’s meta-programming,

subclassing, and groveling in view internals all rolled into one. Thank-

fully, it’s localized to just one file. The big payoff comes when you want

to change the way all your forms look (and handle errors). You just

tweak the form builder and away you go.

Discussion

You could easily subclass this form builder if you wanted to have differ-

ent looks for different forms. You could also dynamically change forms

based upon an input option.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_arr/code/DryUpYourForms/app/views/people/new.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=119

Recipe 23

Prevent Train Wrecks with

Delegate

By Hugh Bien (http://hughbien.com)

Hugh is a web programmer who likes working with agile languages. He uses Rails at his day

job and keeps himself busy with fun side projects.

Problem

ActiveRecord associations make it easy to traverse model relationships:

just add one more dot. But go too far, and you often end up with method

chains that access attributes through a relationship, like this:

account.subscription.free?

account.subscription.last_payment.overdue?

Some people call this object-oriented programming. We call it a train

wreck. If the details of how a subscription handles its last payment

change, for example, the whole thing goes off the rails. So how do you

clean this up?

Solution

One solution is to encapsulate far-reaching attributes in methods that

delegate to other models, like so:

class Account < ActiveRecord::Base

has_one :subscription

def free?

self.subscription.free?

end

end

But there’s an easier way. We can use the delegate method to keep one

object from knowing too much about the objects it’s related to. (It’s a

shy object.) Instead of defining a free? method in our Account class, we

can just delegate it straight to the account’s subscription.

Download PreventTrainWrecksWithDelegate/app/models/account.rb

class Account < ActiveRecord::Base

has_one :subscription

delegate :free?, :to => :subscription

end

Prepared exclusively for Jeanne McDade

http://hughbien.com
http://media.pragprog.com/titles/fr_arr/code/PreventTrainWrecksWithDelegate/app/models/account.rb

23. PREVENT TRAIN WRECKS WITH DELEGATE 121

Then given an Account object, we can just call the free? method directly:

account.free?

The delegate method is very easy to use, but there’s more to it under the

hood. We can delegate multiple methods to another object, for example:

Download PreventTrainWrecksWithDelegate/app/models/account.rb

class Account < ActiveRecord::Base

has_one :subscription

delegate :free?, :paying?, :to => :subscription

end

And we can also use delegate to traverse through more than one asso-

ciation:

Download PreventTrainWrecksWithDelegate/app/models/account.rb

delegate :overdue?, :to => "subscription.last_payment"

Finally, sometimes an account might exist that does not have a sub-

scription. In this case, we’ll get a NoMethodError of a Nil object (some-

times called the whiny nil). We can prevent this with a little hack:

Download PreventTrainWrecksWithDelegate/app/models/account.rb

delegate :free?, :paying?, :to => "subscription.nil? ? false : subscription"

Let’s see how that works in the console without a subscription:

$ ruby script/console

>> a = Account.new

=> #<Account id: nil ...>

>> a.subscription

=> nil

>> a.free?

=> false

If no subscription exists, then free? returns false rather than nil.

Now if we assign a subscription to the account, it delegates the call as

expected:

>> a.subscription = Subscription.new(:free => true)

=> #<Subscription id: nil ...>

>> a.free?

=> true

Using this simple technique, we can reduce unnecessary coupling across

our codebase. Instead of having account.subscription.last_payment.overdue?

gumming up the works, we can use the shy account.overdue? method

instead. That way, any changes to how our associations work will require

just one change in our call to delegate.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/PreventTrainWrecksWithDelegate/app/models/account.rb
http://media.pragprog.com/titles/fr_arr/code/PreventTrainWrecksWithDelegate/app/models/account.rb
http://media.pragprog.com/titles/fr_arr/code/PreventTrainWrecksWithDelegate/app/models/account.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=121

23. PREVENT TRAIN WRECKS WITH DELEGATE 122

Discussion

If you find yourself using delegate on a frequent basis, it may be a smell,

as they say.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=122

Recipe 24

Creating Meaningful

Relationships Through Proxies

By Mike Mangino (http://www.elevatedrails.com)

Thanks to Mike Mangino for the reloading tip in this recipe.

Problem

You find yourself writing lots of custom finder methods to constrain

your model associations based on a variety of scenarios—finding all

paid registrations for a given event, for example. As a result, your model

code has gradually turned into something you’re not proud of and you’d

like to clean it up.

Solution

Let’s walk through a series of code refactorings, starting with the fol-

lowing relationship:

class Event < ActiveRecord::Base

has_many :registrations

end

We’d like to add some code that returns just the registrations that have

been paid. Where do we put that code? To answer that, let’s first dig

deeper into the association:

$ ruby script/console

>> e = Event.find :first

=> #<Event id: 1...>

>> e.registrations

=> []

>> e.registrations.class

=> Array

Here’s where things get interesting. The registrations method returns

something that looks like an array, and acts like an array, but in fact

it’s not an array. It’s really an association proxy in disguise. Among its

other special powers, it lets us call Active Record class methods on the

association:

>> e.registrations.create(:name => 'Fred', :paid_at => Time.now, :price => 5.00)

=> #<Registration id: 1...>

Prepared exclusively for Jeanne McDade

http://www.elevatedrails.com

24. CREATING MEANINGFUL RELATIONSHIPS THROUGH PROXIES 124

>> e.registrations.find(:all, :conditions => "paid_at is not null")

=> #<Registration id: 1...>

>> e.registrations.sum(:price)

=> #<BigDecimal:190c92c,'0.5E1',4(8)>

In other words, the association is proxying method calls—create, find,

sum, etc.—through to the Registration class. But, and here’s the really

important part, it scopes any database operations to the root object (an

event in this case). Here’s the SQL generated by the methods we just

ran:

INSERT INTO `registrations` (`event_id`, `name`, `price`, `paid_at`)

VALUES(1, 'Fred', '5.0', '2007-12-14 09:42:15')

SELECT * FROM `registrations` WHERE (registrations.event_id = 1

AND (paid_at is not null))

SELECT sum(price) AS sum_price FROM `registrations`

WHERE (registrations.event_id = 1)

So if we can proxy calls through to the Registration class, then we can

start by putting the conditions for finding paid registrations in a class

method:

class Registration < ActiveRecord::Base

belongs_to :event

def self.paid

find :all, :conditions => "paid_at is not null"

end

end

And that lets us find all paid registrations for a specific event:

>> e.registrations.paid

=> [#<Registration id: 1...]

However, since we’re always scoping paid registrations to the event, we

can actually transform the code into a well-named association (paid_registrations)

on the Event class itself:

class Event < ActiveRecord::Base

has_many :registrations

has_many :paid_registrations,

:class_name => "Registration",

:conditions => "paid_at is not null"

end

It’s the same underlying database operation, but the call is a bit more

meaningful:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=124

24. CREATING MEANINGFUL RELATIONSHIPS THROUGH PROXIES 125

>> e.paid_registrations

=> [#<Registration id: 1...]

Now we have the code where we want it, but it’s inconvenient to main-

tain two associations. We can actually do one better. It turns out we

can pass a block to an association which defines methods just for that

association. Here’s the same code, this time using just one association:

class Event < ActiveRecord::Base

has_many :registrations do

def paid

find(:all, :conditions => "paid_at is not null")

end

end

end

Now the call looks like something we’ve seen before:

>> e.registrations.paid

=> [#<Registration id: 1

With all design decisions, there’s a trade-off. Just calling e.registrations

is cached—it’ll only hit the database the first time. However, calling

e.registrations.paid isn’t cached. It falls out of bounds of Active Record

default caching. But we can fix that easy enough:

class Event < ActiveRecord::Base

has_many :registrations do

def paid(reload=false)

@paid_registrations = nil if reload

@paid_registrations ||= find(:all, :conditions => "paid_at is not null")

end

end

end

Now we have a simple, but effective, association proxy cache that we

can expire by passing in true. Named associations like this go a long

way toward making code more expressive and maintainable.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=125

Part VI

Asynchronous Recipes

126
Prepared exclusively for Jeanne McDade

Recipe 25

Processing an Asynchronous

Workflow

By Jonathan Dahl (http://slantwisedesign.com)

Jonathan Dahl is a Founding Partner at Slantwise Design, a web application development

shop in Minnesota. Besides 20-odd Rails projects, Jonathan has done extensive work with

video transcoding, and just released Zencoder, a distributed video processing system built

with Ruby (http://zencoder.tv).

Problem

Your application needs to execute a time-consuming process such as

video transcoding or large PDF generation. The process will take more

than a few seconds, so you can’t do it synchronously within the lifecycle

of an HTTP request. But you want the processing to begin immediately,

so you can’t just trigger it with a nightly or hourly cron job. And here’s

the kicker: You also want to track the status of the job as it transitions

from one state to the next.

Ingredients

• Scott Barron’s acts_as_state_machine plugin:

$ script/plugin install ←֓

http://elitists.textdriven.com/svn/plugins/acts_as_state_machine/trunk

• The simple-daemon gem:

$ gem install simple-daemon

Solution

Let’s take the example of PDF generation. Requests for PDF updates

come in and we need to get them stamped as soon as possible. On

a particularly busy day when PDFs get queued up, we also need to

track their status. It seems like a fairly difficult task, but with a couple

off-the-shelf ingredients we’ll be up and running in no time. We’ll use

a simple Ruby daemon (simple-daemon) to poll our database looking

for new PDF generation jobs and the acts_as_state_machine plugin to

manage the workflow states.

First we need a model that represents the work to be done, so let’s start

by creating a Pdf model and migration:

Prepared exclusively for Jeanne McDade

http://slantwisedesign.com
http://zencoder.tv

25. PROCESSING AN ASYNCHRONOUS WORKFLOW 128

$ script/generate model pdf title:string state:string ←֓

version:integer priority:integer processing_error_message:string

$ rake db:migrate

Of particular note are the state and version columns:

• The state column will be used by acts_as_state_machine to track

what’s currently happening with a PDF.

• The version column is a special Active Record column used for

optimistic locking. It ensures that if two processes access the

same row and try to save competing edits, the second edit will fail

with an ActiveRecord::StaleObjectError exception. We’ll handle that

shortly.

Next, in our Pdf model we set up acts_as_state_machine to transition

between states when certain events are fired (see Recipe 17, Creating a

Wizard, on page 83 for a state machine refresher):

Download AsyncWorkflow/app/models/pdf.rb

class Pdf < ActiveRecord::Base

acts_as_state_machine :initial => :pending

state :pending

state :processing

state :complete

state :error

event :start_pdf_generation do

transitions :from => :pending, :to => :processing

end

event :finish_pdf_generation do

transitions :from => :processing, :to => :complete

end

event :processing_error do

transitions :from => :processing, :to => :error

end

def self.find_for_pdf_generation

find(:first,

:conditions => "state = 'pending'",

:order => "priority, created_at")

end

def generate_pdf

logger.info("Generating #{title} PDF...")

Insert your long-running code here to generate PDFs.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/AsyncWorkflow/app/models/pdf.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=128

25. PROCESSING AN ASYNCHRONOUS WORKFLOW 129

end

end

A Pdf starts in the pending state. When a start_pdf_generation event occurs,

for example, the Pdf transitions to the processing state. In this way it goes

from pending through to complete provided there are no errors. We’ve

also written a custom finder to fetch all the pending PDFs, ordered by

priority.

Now we need a side dish of code that will drive our little PDF state

machine. As it’s not a model, we’ll just place it in the lib directory:

Download AsyncWorkflow/lib/generate_pdf.rb

require File.dirname(__FILE__) + '/../app/models/pdf.rb'

class GeneratePdf

def self.run

begin

pdf = Pdf.find_for_pdf_generation

raise ActiveRecord::RecordNotFound if pdf.nil?

pdf.start_pdf_generation!

pdf.generate_pdf

pdf.finish_pdf_generation!

rescue ActiveRecord::StaleObjectError

do nothing

rescue ActiveRecord::RecordNotFound

sleep 10

rescue

return unless pdf

pdf.processing_error!

pdf.update_attributes(:processing_error_message => "unknown error: #{$!}")

end

end

end

The single method in this class, run, first tries to pick a PDF off the pile

using the method we wrote to return the next highest-priority PDF. If

a PDF is pending, the run method marks the PDF as being in-process

by triggering the start_pdf_generation event. Then it carries on with the

real work of generating the PDF. Finally the finish_pdf_generation event

is triggered, and our PDF updates to the complete state.

That’s the happy path. If there’s no pending PDF, the run method sleeps

for 10 seconds and then checks again. If a StaleObjectError is raised—

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/AsyncWorkflow/lib/generate_pdf.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=129

25. PROCESSING AN ASYNCHRONOUS WORKFLOW 130

where two processes tried to save competing changes to the same PDF

record—the second process will fail silently and move on to the next

PDF. Finally, if an unknown exception is encountered, the PDF is moved

to the error state and the exception message is saved in the process-

ing_error_message column.

The last piece of the puzzle is the daemon process that calls our run

method in a loop. It’s a script we’ll run from the command line, so it

goes in the scripts/pdf_generator file:

Download AsyncWorkflow/script/pdf_generator

#!/usr/bin/env ruby

RAILS_ENV = ARGV[1] || 'development'

require File.dirname(__FILE__) + '/../config/environment.rb'

class PdfGeneratorDaemon < SimpleDaemon::Base

SimpleDaemon::WORKING_DIRECTORY = "#{RAILS_ROOT}/log"

def self.start

loop do

GeneratePdf.run

end

end

def self.stop

puts "Stopping PDF Generator..."

end

end

PdfGeneratorDaemon.daemonize

This script uses the SimpleDaemon::Base class to manage a PID file.

When the daemon is started, the log/pdf_generator.pid file is created and

the process ID of the daemon process is slipped inside. When the dae-

mon is stopped, the PID is read from the log/pdf_generator.pid and the

corresponding process is stopped.

Before we run all this, we need to add two requirements which we’ll

throw in a Rails initializer file:

Download AsyncWorkflow/config/initializers/generate_pdf.rb

require 'simple-daemon'

require 'generate_pdf'

OK, now let’s fire up the daemon in development mode:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/AsyncWorkflow/script/pdf_generator
http://media.pragprog.com/titles/fr_arr/code/AsyncWorkflow/config/initializers/generate_pdf.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=130

25. PROCESSING AN ASYNCHRONOUS WORKFLOW 131

$ ruby script/pdf_generator start development

Daemon started.

Then if we throw a PDF into the database using the console, the PDF

gets picked up and processed behind the scenes for us:

$ ruby script/console

>> p = Pdf.create(:title => "Advanced Rails Recipes", :priority => 1)

>> p.state

=> "pending"

>> p.reload

>> p.state

=> "complete"

When we’re all done, it’s polite to give the daemon a rest:

$ ruby script/pdf_generator stop development

Finally, to put all this into production, we’ll just add the following cus-

tom tasks to our Capistrano recipe in the config/deploy.rb file, and run

them automatically after the standard deployment chores are done:

task :start_pdf_generator :roles => :app do

run "ruby #{current_path}/script/pdf_generator start production"

end

task :stop_pdf_generator :roles => :app do

run "ruby #{current_path}/script/pdf_generator stop production"

end

after(:deploy) { start_pdf_generator; stop_pdf_generator }

Then sit back, relax, and let the hamsters do all the work...

Discussion

Workflows often include multiple states (or stages) with various events

leading to each state. The rules can get fairly complex quickly, and

acts_as_state_machine really shines in these scenarios. In this case, we

used it as an effective way to model a simple workflow with a daemon

processing it asynchronously. If you have multiple servers running your

main application, you can run a processing daemon on each server. The

downside, if you’d call this a downside, is that your processor is tightly

bundled to your Rails application. It integrates at the model level, using

the Pdf model in this case to find and process jobs.

Another approach to asynchronous processing—and there are many—

is to integrate with a message queue. Amazon’s Simple Queuing Service

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=131

25. PROCESSING AN ASYNCHRONOUS WORKFLOW 132

(SQS) is a good candidate. Whenever a new PDF is available for process-

ing, your Rails application will send a message to SQS that identifies

the PDF ID, the location of the file, and instructions for processing.

Your processing scripts poll your SQS queue for new jobs; when they

find one, they do their processing and then respond to your Rails appli-

cation synchronously through REST.

Finally, there are at least three additional improvements you should

consider:

• Check for lost jobs. If a job enters the processing state but doesn’t

finish, it will be lost in limbo. Add a processed_at column to the Pdf

model and set the state machine to populate processed_at with the

current time when the document enters the processing state. You’ll

also need to change the find_for_pdf_generation method to look for

jobs with a state of processing that were marked as processed_at

more than N minutes or hours ago.

• Receive email notifications of unhandled exceptions. You probably

use the exception_notifier plugin for you main Rails app; patch

into that plugin, or write your own exception code.

Also See

For an example of how to monitor the daemon process, see Recipe 67,

Monitoring (and Repairing) Processes with Monit, on page 285.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=132

Recipe 26

Off-Loading Long-Running

Tasks to BackgrounDRb

By Gregg Pollack and Hemant Kumar (http://www.railsenvy.com,http://gnufied.org)

Gregg Pollack lives in Orlando, Florida where he runs the Orlando Ruby Users Group, writes

on his blog Rails Envy, and is always hunting for more Rails projects for his company Patched

Software. Hemant Kumar is the current maintainer of the BackgrounDRb library.

Problem

You have an action that starts a long-running task—say, around 30

seconds. The task is something that the user wants to wait around for,

but you don’t want to tie up the entire Rails process for one request/response

cycle and risk the user inching his mouse towards the dreaded refresh

button. Instead, you’d like to off-load the task to a background process,

respond to the original web request immediately, and continually give

the user updates on the status of the task.

Ingredients

• The BackgrounDRb plugin:24

$ script/plugin install http://svn.devjavu.com/backgroundrb/trunk/

Solution

Let’s say our application is a virtual mall for boutique shops. Customers

buy stuff throughout the day, and shop owners needs to charge their

customers in batch to optimize the payment process. On a good sales

day it might take a few seconds to run all the charges through the

system, and the conventional web request/response cycle gets really

clunky. And every time a shop owner presses the button to run the

charges, we have one less Rails process available for other work. So

we need a way to run the billing code in a separate process, and then

periodically update the status in the browser.

All this talk of background tasks sounds like a lot of work, but it’s

surprisingly straightforward with BackgrounDRb. The BackgrounDRb

24. http://backgroundrb.rubyforge.org/

Prepared exclusively for Jeanne McDade

http://www.railsenvy.com, http://gnufied.org
http://backgroundrb.rubyforge.org/

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 134

server is just a process that has access to our Rails environment. We

queue up work through a MiddleMan object living in our Rails applica-

tion, and the MiddleMan delegates the work to workers, leaving our Rails

process free to take new web requests. And just like any good middle

man, we can ask it for an update on worker status.

After installing the BackgrounDRb plugin, we need to configure it:

$ rake backgroundrb:setup

This gives us three files and a directory:

• The config/backgroundrb.yml file contains the basic configuration

required to run the BackgrounDRb server. The contents of the file

looks like this:

:backgroundrb:

:port: 11006

:ip: 0.0.0.0

The BackgrounDRb server will listen on the specified port and ip.

By default all workers will be loaded in the development environ-

ment which can be changed using:

:backgroundrb:

:environment: production

• The script/backgroundrb script starts, stops, and restarts the Back-

grounDRb server process.

• The test/bdrb_test_helper.rb is a helper file for testing our workers.

• The lib/workers directory houses the worker code.

Lets go ahead and create a worker to handle our long-running billing

chores:

$ script/generate worker billing

This generates a skeleton lib/workers/billing_worker.rb file like this:

class BillingWorker < BackgrounDRb::MetaWorker

set_worker_name :billing_worker

def create(args = nil)

end

end

Obviously we need to add code inside the create method. To get the

hang of things, lets start with a some logging and a delay:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=134

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 135

class BillingWorker < BackgrounDRb::MetaWorker

set_worker_name :billing_worker

def create(args=nil)

args.each do |customer_id|

logger.info "Billing customer #{customer_id}..."

sleep(3)

end

logger.info "All Done"

exit

end

end

Now that we’ve created a worker, we can start the BackgrounDRb server:

$ script/backgroundrb start

Then we’ll jump straight into the console and start our worker:

$ ruby script/console

>> key = MiddleMan.new_worker(:worker => :billing_worker,

:job_key => "abc123", :data => [1, 2, 3])

=> "abc123"

This creates a BillingWorker in a new process and invokes the create

method, passing in our array of customer ids (the array we used for

the :data option). As we have three customers with a 3-second delay

between each, this method should run for 9 seconds. But we don’t have

to wait around—the new_worker method returns as soon as the worker

has started and hands us back the job key for future reference.

Now if we peek in the log/backgroundrb.log file we’ll see:

Billing customer 1...

Billing customer 2...

Billing customer 3...

All Done

This is all hunky-dory, but it’s currently a one-way street through the

MiddleMan and, well, the work isn’t very interesting. So our the next

step is to actually bill each customer and keep track of the status along

the way. Here’s our revised worker:25

Download BackgrounDrb/lib/workers/billing_worker.rb

class BillingWorker < BackgrounDRb::MetaWorker

set_worker_name :billing_worker

set_no_auto_load(true)

25. If you change the source of one of your workers, you will need to stop and start your

BackgrounDRb server to see the changes.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/BackgrounDrb/lib/workers/billing_worker.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=135

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 136

def create(args=nil)

register_status(:percent_complete => 0)

args.each_with_index do |customer_id, index|

c = Customer.find(customer_id)

c.bill!

percent_complete = ((index + 1) * 100) / args.length

logger.info "Billing is #{percent_complete}% complete..."

register_status(:percent_complete => percent_complete)

end

exit

end

end

We have access to our Customer model from inside the worker, which

means we can neatly tuck the billing logic behind the bill! method. As

each customer is billed, we use the register_status method to accumulate

how far along the worker is in the :percent_complete status variable.

We’ve also slipped in a call to the set_no_auto_load method. By default

each of the workers found in the lib/workers directory will be started in a

separate process when the BackgrounDRb server starts. We don’t need

to do this automatically, so we’ve disabled auto-loading.

That takes care of the worker. Next we need to plug all this into our

Rails application.

Lets assume we have a form that lists all the customers who haven’t

been billed yet and includes a checkbox next to each one indicating

whether we want to bill them. When we post the form, we want to call

the MiddleMan.new_worker method and toss all the customer ids that

need billing to our worker. Rather than clutter the controller action with

BackgrounDRb details, we’ll encapsulate the starting and statusing in

methods of our Shop model. Here’s the full model:

Download BackgrounDrb/app/models/shop.rb

class Shop < ActiveRecord::Base

has_many :customers

validates_presence_of :name, :login, :password

def unpaid_customers

customers.find(:all, :conditions => "last_billed_at is null")

end

def start_billing(customers_to_charge)

MiddleMan.new_worker(:worker => :billing_worker,

:job_key => self.id,

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/BackgrounDrb/app/models/shop.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=136

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 137

:data => customers_to_charge)

end

def self.billing_status(job_key)

status = MiddleMan.ask_status(:worker => :billing_worker,

:job_key => job_key)

status[:percent_complete]

end

end

Then over in the create action of our ChargesController we just roll up all

the customer IDs to charge and start the billing:

Download BackgrounDrb/app/controllers/charges_controller.rb

def create

customers_to_charge = []

params[:charge_customer].each do |customer_id, charge|

customers_to_charge << customer_id if charge == "yes"

end

session[:bill_job_key] = @current_shop.start_billing(customers_to_charge)

redirect_to :action => 'check_bill_status'

end

Just like in the console, we get the job key back as soon as the worker

has started. In this case, we stash it away in the session. Then we

immediately redirect to the check_bill_status action and use the job key

to ask our worker for a status:

Download BackgrounDrb/app/controllers/charges_controller.rb

def check_bill_status

@percent_complete = Shop.billing_status(session[:bill_job_key])

if request.xhr?

if @percent_complete == 100

render :update do |page|

flash[:notice] = "Billing is complete!"

session[:bill_job_key] = nil

page.redirect_to :action => "index"

end

else

render :update do |page|

page[:billingStatus].setStyle :width => "#{@percent_complete * 2}px"

page[:billingStatus].replace_html "#{@percent_complete}%"

end

end

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/BackgrounDrb/app/controllers/charges_controller.rb
http://media.pragprog.com/titles/fr_arr/code/BackgrounDrb/app/controllers/charges_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=137

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 138

At this point, the action falls right through to a template that shows no

progress, but starts a periodic remote call back to the check_bill_status

method to poll for a status every three seconds:

Download BackgrounDrb/app/views/charges/check_bill_status.html.erb

<h1>Billing in Progress</h1>

<div id="billingStatus" class="progress">

</div>

<%= periodically_call_remote :url => "check_bill_status", :frequency => 3 %>

Each time the action is called, it asks the Shop for its billing status and

uses an RJS update block to update the billingStatus DIV progress bar.

When the billing is complete, we clear out the job key and use RJS to

issue a full redirect back to the list of pending charges.

The result is a fairly transparent solution for firing up separate pro-

cesses to handle long-running tasks and continuously reporting their

status back to the user.

Now let’s say we also want to use BackgrounDRb to perform a partic-

ular off-line task, such as sending receipt e-mails to our customers.

Unlike the billing task, we basically just want to fire off a request to a

specific worker method without waiting for the result. To do that, we

can use the ask_work method:

MiddleMan.ask_work(:worker => :billing_worker,

:worker_method => :mail_receipts,

:data => customer_ids)

Except on a really busy day we might have multiple shop owners all

sending emails at the same time. And if the worker is already busy

when a new task arrives, the work won’t get queued and pretty soon

customers start phoning up asking what happened to their receipt.

Instead we want our mail_receipts tasks to pile up and get worked off one

after the other, reliably. The solution is simple: We just configure the

built-in thread pool with a worker size of 1 and use the thread_pool.defer

method:

class BillingWorker < BackgrounDRb::MetaWorker

set_worker_name :billing_worker

pool_size 1

def create(args=nil)

...

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/BackgrounDrb/app/views/charges/check_bill_status.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=138

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 139

def mail_receipts(customer_ids)

thread_pool.defer(customer_ids) do |customer_ids|

customer_ids.each do |customer_id|

CustomerMailer.deliver_receipt(customer_id)

end

end

end

end

Now no matter how many mail tasks we send to the worker, they’ll all be

queued in a thread pool. And since the thread pool has a size of 1, only

one of the tasks will run at a time. Similarly, if we wanted concurrent

processing of tasks, we could increase the size of the thread pool using

the pool_size method and process tasks concurrently.

Last, but by no means least, we might have background tasks that we

want to run on an automated schedule. The general solution is to use

cron, but managing cron jobs and checking their status can be cum-

bersome. Thankfully, BackgrounDRb has a built-in scheduler, too. In

the backgroundrb.yml file, we can configure certain worker methods to

be invoked on a periodic basis (and check it in to version control, of

course). For example:

:backgroundrb:

:port: 11006

:ip: 0.0.0.0

:schedules:

:billing_worker:

:check_incoming_email:

:trigger_args: */30 * * * * *
:generate_reports:

:trigger_args: 0 30 5 * * * *
:data: "Summary Report"

This configuration schedules the check_incoming_email method of the

BillingWorker to execute every 30 seconds and the generate_reports to exe-

cute at 5:30 in the morning. The data specified with the :data option

is passed to the method as an argument. If you use the scheduler this

way, it’s important to remember that you should not disable auto load-

ing of worker classes.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=139

26. OFF-LOADING LONG-RUNNING TASKS TO BACKGROUNDRB 140

Discussion

As of version 1.0, BackgrounDRb is no longer implemented using Ruby’s

DRb library. And unlike other techniques of network programming that

use threads, BackgrounDRb uses IO multiplexing to make use of non-

blocking socket IO and stays largely thread free. It does that using

the packet26 library, which is an event-driven network programming

library. The basic idea is to have a reactor loop monitoring a socket,

and when an event occurs on the socket a callback method is invoked.

BackgrounDRb is basically a process that watches for incoming events

from Rails and invokes workers to execute Rails code out of band. There

are other powerful BackgrounDRb clustering and network program-

ming capabilities available in workers.

Also See

See Recipe 67, Monitoring (and Repairing) Processes with Monit, on page 285

for an example of how to configure Monit to monitor the BackgrounDRb

server process.

26. http://code.google.com/p/packet/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://code.google.com/p/packet/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=140

Part VII

E-mail Recipes

141
Prepared exclusively for Jeanne McDade

Recipe 27

Validating E-mail Addresses

By Michael Slater (http://www.buildingwebapps.com)

Michael Slater is president of Collective Knowledge Works, Inc., which publishes the Build-

ingWebApps.com portal for Ruby on Rails developers. He’s worked as a freelance web

developer, director of digital imaging research at Adobe Systems, cofounder and chair-

man of software start-up Fotiva, editor and publisher of the Microprocessor Report newslet-

ter, hardware engineering consultant, and engineer at Hewlett-Packard.

Problem

When people create an account for your application, they enter their

e-mail address. You use that address to send them account activation

links, order receipts, and so on. Sometimes people mistype their e-mail

address, and they never receive your e-mails. (Instead, you get an e-

mail from them complaining they never received thus and such.) So

you need to verify their e-mail address before it gets stored in your

database.

Solution

We could require that people enter their e-mail address twice in hopes

of catching mistakes, but that seems clunky. Or we could send them an

e-mail with an activation link which provides the only true validation.

Wait, that won’t work! We don’t have a valid address to send it to.

What we really need to do is validate the e-mail address when the user

enters it. There are two parts to this solution: checking that what they

enter looks like an e-mail address and checking that the domain name

is valid. Let’s tackle the tricky part first.

The only way to check the domain name is to actually go out over the

network and ask the domain if it handles e-mail. We can do that with

the help of the Ruby standard resolv library:

Download buffet/app/models/person.rb

require 'resolv'

EMAIL_PATTERN = /(\S+)@(\S+)/

SERVER_TIMEOUT = 3 # seconds

def valid_domain?(email)

domain = email.match(EMAIL_PATTERN)[2]

Prepared exclusively for Jeanne McDade

http://www.buildingwebapps.com
http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/person.rb

27. VALIDATING E-MAIL ADDRESSES 143

dns = Resolv::DNS.new

Timeout::timeout(SERVER_TIMEOUT) do

Check the MX records

mx_records =

dns.getresources(domain, Resolv::DNS::Resource::IN::MX)

mx_records.sort_by {|mx| mx.preference}.each do |mx|

a_records = dns.getresources(mx.exchange.to_s,

Resolv::DNS::Resource::IN::A)

return true if a_records.any?

end

Try a straight A record

a_records = dns.getresources(domain, Resolv::DNS::Resource::IN::A)

a_records.any?

end

rescue Timeout::Error, Errno::ECONNREFUSED

false

end

After teasing out the domain name from the rest of the e-mail address

using a regular expression, we use the resolv library to look for MX

(mail exchanger) records at the domain. If it finds mail records, they

just contain a domain name, so the inner check verifies that the name

corresponds to a valid domain. If we find an MX record with a name

that matches an A record, then that’s the best shot we have at being

able to send e-mail to that domain. Except a server doesn’t need an MX

record to receive an e-mail. So if no MX records were found or had valid

domain names, we fall back to checking for an A record. And if doing all

this takes too long because a DNS server times out, we treat the e-mail

as being invalid.

Finally we combine this with simple formatting validation, add it all to

our Person model for example, and we have everything we need:

Download buffet/app/models/person.rb

validates_format_of :email, :with => EMAIL_PATTERN

def validate

unless errors.on(:email)

unless valid_domain?(email)

errors.add(:email, 'domain name appears to be incorrect')

end

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/person.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=143

27. VALIDATING E-MAIL ADDRESSES 144

Only if the e-mail matches a loose format do we then go ahead and try

to run the network tests. And if everything shakes out, then we wind

up with what we believe to be a valid e-mail address in our database.

This is a good step forward: it protects against typos. However, it doesn’t

validate that there’s a working SMTP server living at the other end.

We could try to ping the SMTP server through port 25, but modern

spam prevention techniques implemented by many servers make this

difficult, and potentially very slow.

Discussion

A lot of people try using a fancy, strict regular expression they found

on the web to check the e-mail format. While certainly a challenging

exercise in regex mojo, these days valid e-mail addresses can have all

kinds of weird and wacky characters. I’ve had better luck using the

really basic regular expression shown in this recipe. Your mileage may

vary, as they say.

It’s possible to take this a step further by sending the SMTP server

referenced in the MX record a RCPT TO: command. In theory, this would

check that the user name is valid as well as the domain name. However,

it takes additional time and mail servers don’t always respond reliably.

Also See

You might also want to look at the Email Veracity plugin, 27, which runs

similar validations. We chose to implement our own recipe from scratch

to demonstrate the concepts.

27. http://rails.savvica.com/2007/11/6/email-veracity-plugin

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://rails.savvica.com/2007/11/6/email-veracity-plugin
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=144

Recipe 28

Receiving E-mail Reliably via

POP or IMAP

By Luke Francl (http://railspikes.com)

Luke Francl is a Ruby on Rails developer for Slantwise Design, a Minneapolis-based Rails

consultancy. He is a contributor to the MMS2R project and an active member of the Ruby

Users of Minnesota. Luke has presented on Ruby and Rails at conferences world-wide.

Luke comes to Rails from the Java world and still thinks foreign key constraints belong in the

database.

Problem

You need to process incoming e-mail with your Rails application, but

you want to make sure you can handle large volumes of e-mail (or a

e-mail bomb) without breaking a sweat. You might also not want to

configure and run your own mail server.

Ingredients

• An e-mail account that you can access via POP3 or IMAP. If you

have a choice, IMAP is better because you can move messages that

can’t be processed to a folder (call it “bogus” if you want) for later

investigation.

• The Fetcher plugin:

$ script/plugin install svn://rubyforge.org/var/svn/slantwise/fetcher/trunk

The fetcher includes code to download e-mail from POP3 and IMAP

servers and includes back-ports from Ruby 1.9 to support secure

POP and the PLAIN authentication type for IMAP. It also contains

utility code to generate long-running daemon processes, using the

Daemon::Base library.28

• Optionally, the MMS2R gem:29

$ gem install MMS2R

This is a time-saver for dealing with multipart MIME messages

that have attachments. It’s targeted at MMS messages, but works

for all e-mail with attachments.

28. http://snippets.dzone.com/posts/show/2265

29. http://mms2r.rubyforge.org

Prepared exclusively for Jeanne McDade

http://railspikes.com
http://snippets.dzone.com/posts/show/2265
http://mms2r.rubyforge.org

28. RECEIVING E-MAIL RELIABLY VIA POP OR IMAP 146

Solution

Imagine we’re at the helm of a popular web site that lets people e-mail

recipes (and a picture of what came out of the oven) to our applica-

tion, and all the recipes get displayed on page that updates every few

minutes.

The most frequently-given solution is to create a procmail rule some-

thing like this:

:0 c

* ^To:.*@example.com

| /your/rails/app && ruby script/runner "MailProcessor.receive(STDIN.read)"

This rule says to take all e-mail sent to any address at example.com and

send it to a class called MailProcessor. This approach has two drawbacks

for our situation:

1. It will fork a Rails process for each e-mail we receive. We hope to

get a lot of e-mail, and this approach may overwhelm our server.

2. It requires that we run an MTA such sendmail or postfix, perhaps

even with special mail delivery rules, which (as anyone who’s tried

to configure one knows) is a task best avoided and left to profes-

sionals.

Instead, we’re going to use a third-party mail server via POP3 or IMAP,

and let them sweat the details. Using POP3 or IMAP to access our e-

mail requires a little more code than the procmail route, but it won’t

hurt a bit.

First, we need an ActionMailer::Base subclass to handle the e-mail when

it comes in:

Download ReceivingEmail/app/models/mail_processor.rb

class MailProcessor < ActionMailer::Base

def receive(mail)

Your e-mail handling code goes here

logger.info("Received a message with the subject '#{mail.subject}'")

end

end

Then we need a way to fetch e-mail from the mail server and deliver

it into our MailProcessor model. And of course we want it to run con-

tinuously so that we get e-mail in a timely manner. The fetcher plugin

handles all that for us.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

example.com
http://media.pragprog.com/titles/fr_arr/code/ReceivingEmail/app/models/mail_processor.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=146

28. RECEIVING E-MAIL RELIABLY VIA POP OR IMAP 147

So next we generate a daemon to fetch the mail:

$ script/generate fetcher mail

In this case, we’ll end up with a fetcher called MailFetcherDaemon in

script/mail_fetcher. We also get a config/mail.yml configuration file which

we need to update with the e-mail accounts we’ll use in different Rails

environments:

Download ReceivingEmail/config/mail.yml

development:

type: pop

server: mail.example.com

username: recipes@example.com

password: yum

test:

type: pop

server: localhost

username: username

password: password

production:

type: pop

server: localhost

username: username

password: password

We have a number of configuration options, including:

• type: pop or imap

• server: the IP address or domain name of the server

• port: the port to connect to (defaults to the standard ports)

• ssl: set to any value to use SSL encryption (POP3 only)

• authentication: the authentication scheme to use (IMAP only). Sup-

ports LOGIN, CRAM-MD5, and PASSWORD (defaults to PLAIN).

• sleep_time: the number of seconds for the generated daemon to

sleep between fetches (defaults to 60 seconds).

Then we just need to edit the generated fetcher daemon to use our

MailProcessor class as the receiver of e-mail:

Download ReceivingEmail/script/mail_fetcher

def self.start

puts "Starting MailFetcherDaemon"

@fetcher = Fetcher.create({:receiver => MailProcessor}.merge(@config))

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/ReceivingEmail/config/mail.yml
http://media.pragprog.com/titles/fr_arr/code/ReceivingEmail/script/mail_fetcher
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=147

28. RECEIVING E-MAIL RELIABLY VIA POP OR IMAP 148

loop do

@fetcher.fetch

sleep(@sleep_time)

end

end

The Fetcher.create factory method creates a Fetcher::Imap or Fetcher::Pop

instance (depending on your configuration settings) with the MailProces-

sor as the receiver. When the Fetcher#fetch method is called, the e-mail

from the configured mail server is downloaded. Then each message is

fed to MailProcessor#receive in turn and deleted from the mail account.

In between fetches, the daemon sleeps for the configured sleep time or

a default of 60 seconds.

All that’s left is to fire up the daemon with the proper Rails environment

(it defaults to development):

$ RAILS_ENV=production script/mail_fetcher start

Once you start the daemon, it keeps running until you call stop. How-

ever, in the case of problems or server restart, the daemon won’t start

up automatically.30

Discussion

This solution required some extra code to keep the fetcher running

continuously. Why not just use cron for this? Using cron would probably

work fine in most cases. In fact, you could use the fetcher plugin for this

too:

Run the fetcher every minute with cron

* * * * * script/runner 'Fetcher.create({:receiver => MailProcessor,

:type => "pop", :server => "mail.example.com",

:authentication => "PLAIN", :username => "username",

:password => "password" }).fetch'

A drawback to this approach is that if the e-mail takes more than a

minute to process, another cron job will start up and process the same

e-mail twice. Unexpected results may occur! The daemon will always

run for as long as it takes to process the current e-mail in the mailbox,

then sleep for :sleep_time seconds. This ensures there’s only one process

accessing the same e-mail box at a time (assuming you don’t start up

two daemons!)

30. A good way to resolve this is to use Monit as described in Recipe 67, Monitoring (and

Repairing) Processes with Monit, on page 285.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=148

28. RECEIVING E-MAIL RELIABLY VIA POP OR IMAP 149

As an alternative to using the fetcher plugin, you could roll your own

solution using Ruby’s built-in support for POP3 (net/pop) and IMAP

(net/imap). For example, Benjamin Curtis31 uses the following script to

create Bug model objects in his bug tracker while iterating over a list of

e-mails found in an IMAP inbox:

require 'rubygems'

require 'lockfile'

require 'net/imap'

Lockfile('lock', :retries => 0) do

require File.dirname(__FILE__) + '/../config/boot'

require File.dirname(__FILE__) + '/../config/environment'

imap = Net::IMAP.new('imap_server_name')

imap.authenticate('LOGIN', 'imap_login', 'imap_password')

imap.select('INBOX')

imap.search(["ALL"]).each do |message_id|

email = imap.fetch(message_id, 'RFC822')[0].attr['RFC822']

parsed_mail = TMail::Mail.parse(email)

unless parsed_mail.to.nil? # Spam

Bug.create(:tmail => parsed_mail)

end

imap.store(message_id, "+FLAGS", [:Deleted])

end

imap.expunge

imap.logout

imap.disconnect

end

Typically this script would be run from cron or daemonized, and it’s

possible that a run of the script could take long enough to bump into

the next invocation of the script. So the script uses the lockfile gem to

make sure that only one instance is running at any time.

To keep the details of bug creation out of the IMAP script we create

a method in our Bug model that contains the logic for creating a new

record given a parsed e-mail (a Mail::TMail object):

class Bug < ActiveRecord::Base

belongs_to :user

def tmail=(tmail_obj)

self.user = User.find_or_create_by_email(tmail_obj.from.first)

31. http://www.bencurtis.com/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://www.bencurtis.com/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=149

28. RECEIVING E-MAIL RELIABLY VIA POP OR IMAP 150

self.summmary = tmail_obj.subject

self.description = tmail_obj.body

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=150

Recipe 29

Keeping E-mail Addresses Up

To Date

By Mike Mangino (http://www.elevatedrails.com)

Mike Mangino is the founder of Elevated Rails (http://www.elevatedrails.com). He lives in Chicago

with his wife Jen and their two Samoyeds.

Problem

E-mail, for better or worse, remains the primary way to communicate

with your application users: sending password resets, account confir-

mations, order receipts, etc. Unfortunately, e-mail addresses become

invalid at a rate of around 15 to 20 percent a year. So how do you keep

the e-mail addresses for your users up to date?

Solution

The key to keeping valid e-mail addresses is proactive maintenance. If

you regularly correspond with users, detecting bounces can be simple

and painless. Indeed, the first edition of Rails Recipes [Fow06] contains

a recipe on handling e-mail bounces. However, some e-mail servers

don’t provide bounce messages in a format suitable for that recipe.

We’ll tackle how to handle bounced e-mail in two steps: detecting bounces,

and notifying e-mail owners of the problem and how to fix it.

The easiest way to identify bounces is to use a consistent reply-to and

from address in all the messages we send. Addresses such as no-reply@example.com

or bounces@example.com tend to work well. If we receive an e-mail at

one of these addresses, it’s a strong indication of a bounce (but not

always guaranteed).

Once we’ve received a bounced message, we need to associate it with

a user. There are two simple methods we can use, depending upon

how much control we have over our e-mail environment. If we have

complete freedom in the e-mail addresses we can use, it’s easiest to

use a unique e-mail address per recipient. For example, if all e-mail

sent to the user with id 37 is sent with a from address and a reply-to

of no-reply-37@example.com, then we can easily match it up with the

right user. One way to do this consistently is with a setup_for_user helper

method in our mailer model:

Prepared exclusively for Jeanne McDade

http://www.elevatedrails.com
http:// www.elevatedrails.com

29. KEEPING E-MAIL ADDRESSES UP TO DATE 152

Download EmailBounces/app/models/from_notifier.rb

class FromNotifier < ActionMailer::Base

def new_comment(user, comment)

setup_for_user(user)

@subject += " A new comment has been left for you!"

@body[:comment] = comment

end

def setup_for_user(user)

recipients user.email

from "No Reply <bounces-#{user.id}@example.com>"

@subject = "[APP_NAME] "

@body[:user] = user

end

def receive(email)

Bounce.create_for(email)

end

end

If we don’t have that sort of flexibility in our e-mail environment, we can

instead encode user information in a custom e-mail header. Most e-mail

servers will give back the entire bounced message, including headers.

We can easily add a custom header to mark which user the bounce

came from:

Download EmailBounces/app/models/header_notifier.rb

class HeaderNotifier < ActionMailer::Base

def new_comment(user, comment)

setup_for_user(user)

@subject += " A new comment has been left for you!"

@body[:comment] = comment

end

def setup_for_user(user)

recipients user.email

from "No Reply <bounces@example.com>"

@subject = "[APP_NAME] "

headers["X-User-ID"] = user.id

@body[:user] = user

end

def receive(email)

Bounce.create_for(email)

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/EmailBounces/app/models/from_notifier.rb
http://media.pragprog.com/titles/fr_arr/code/EmailBounces/app/models/header_notifier.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=152

29. KEEPING E-MAIL ADDRESSES UP TO DATE 153

In both of our mailers, we included a receive method. (See Recipe 28,

Receiving E-mail Reliably via POP or IMAP, on page 145 for a recipe on

calling this method when an e-mail arrives at your mail account.)

To track bounced e-mails, we’ll create a bounces database table, where

each bounce belongs to a user:

Download EmailBounces/db/migrate/002_create_bounces.rb

def self.up

create_table :bounces do |t|

t.integer :user_id

t.text :body

t.timestamps

end

end

Then we need a Bounce model to deal with bounced e-mails. It’s first

job is to parse incoming (defunct) e-mails:

Download EmailBounces/app/models/bounce.rb

def self.create_for(email)

body = email.to_s

return unless body.match(/MAILER-DAEMON/i)

email.to.each do |recipient|

address = recipient.split(/@/)[0]

if address and match = address.match(/bounces-(\d+)/)

process_match(match, email)

end

end

if match = email.to_s.match(/X-User-ID:\s+(\d+)/mi)

process_match(match, email)

end

end

The create_for method first looks for the MAILER-DAEMON string to make

sure the message is a bounce. If it isn’t found, processing stops. Next,

it looks at both the recipients and the headers to try to find a user ID

associated with this message. If it finds an e-mail address and a user

id, then the pair are handed off to the process_match method:

Download EmailBounces/app/models/bounce.rb

def self.process_match(match, email)

user_id = match[1]

user = User.find(user_id)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/EmailBounces/db/migrate/002_create_bounces.rb
http://media.pragprog.com/titles/fr_arr/code/EmailBounces/app/models/bounce.rb
http://media.pragprog.com/titles/fr_arr/code/EmailBounces/app/models/bounce.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=153

29. KEEPING E-MAIL ADDRESSES UP TO DATE 154

cleanup_old_bounces(user)

bounce = create!(:user => user, :body => email.to_s)

user.email_bounced(bounce)

end

def self.cleanup_old_bounces(user)

old = user.bounces.find(:all,:conditions => ["created_at < ?", 21.days.ago])

old.each(&:destroy)

user.bounces.reload

end

This code creates a new bounce record associated with the user, and

purges old bounces to keep things tidy. (Saving off the contents of the

message takes a little extra space, but it also makes bounce debugging

possible.) Finally we call the email_bounced method on the User model

to signal a bounce condition.

How the User object responds to the bounce will depend greatly upon

your app’s particular usage pattern. Let’s assume that e-mail is a cru-

cial component to our app, and we want to correct the e-mail address

as quickly as possible. To do that, we’ll just set a email_validated_at flag

indicating that the user must update or verify their address. For exam-

ple:

Download EmailBounces/app/models/user.rb

class User < ActiveRecord::Base

has_many :bounces

MAX_BOUNCES = 1

def should_email?

email_validated_at?

end

def email_bounced(bounce)

if bounces.size > MAX_BOUNCES

update_attribute(:email_validated_at, nil)

end

end

end

Then over in our ApplicationController we just need two before_filter meth-

ods to make sure a user is logged in and has a validated e-mail address

on file:

Download EmailBounces/app/controllers/application.rb

before_filter :login_required

before_filter :require_valid_email

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/EmailBounces/app/models/user.rb
http://media.pragprog.com/titles/fr_arr/code/EmailBounces/app/controllers/application.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=154

29. KEEPING E-MAIL ADDRESSES UP TO DATE 155

def login_required

@user = User.find(session[:user_id])

redirect_to new_session_path and return false if @user.nil?

end

def require_valid_email

unless @user.should_email?

render :action=> "users/validate_email"

return false

end

end

We’ll also need to make sure that all pages a user might visit to change

and/or reconfirm their e-mail address skip this before_filter using:

skip_before_filter :require_valid_email,

:only => [:edit, :verify, :update]

Because e-mail does occasionally bounce due to misconfigured servers,

you may not want to disable an account on the first bounce. It often

makes sense to send a verification e-mail 24 to 48 hours after the first

bounce. If that e-mail bounces, it’s probably safe to mark the address

as bouncing. If that e-mail doesn’t bounce, it makes sense to clear

the bounce history. You can adjust the MAX_BOUNCES constant used

in this recipe to control how many bounces are necessary to disable an

account. If you have other methods of communicating with your users,

such as RSS or SMS, you may want to use these channels to notify

them of e-mail bounces, as well.

Discussion

Bounce messages come from the SMTP server that you use to send

e-mail. Be sure to test with your production SMTP server, as imple-

mentations vary between vendors.

If you use IDs in your bounce detection that are easy to guess, a mali-

cious user could potentially shut down another users account. This

could be a real problem for auction- or finance-related applications.

There is more than one solution to prevent this. First, instead of using

the ID column, use a UUID or other long and fairly random ID. You

could also record each message sent, and use a unique ID per mes-

sage. This is more secure and can give you better traceability, but may

not be worth the trouble, especially if you send a large number of mes-

sages.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=155

Part VIII

Console Snacks

156
Prepared exclusively for Jeanne McDade

Snack Recipe 30

Writin’ Console Methods

By day, PJ Hyett and Chris Wanstrath run the Rails consulting and training firm, Err

Free. By night, they maintain Err the Blog, a running commentary on both Ruby

and Rails.

A lot of the irb tricks you develop or find on the web are useful more

than once. You know, that obscure snippet that honks your computer’s

horn whenever a NoMethodError is raised is gonna come in handy for all

sorts of fun, so you might as well keep it around.

So where do we stockpile irb goodies? Well, as a courtesy, when irb starts

up it tries to load a file named .irbrc from your home directory. And,

since script/console is just irb with a tuxedo t-shirt on, all of the irb hacks

and customizations are always available. But we can do one better: we

can write Rails-specific irb methods and use them across different Rails

apps.

Say we routinely run arbitrary SQL from script/console the longhand

way, like this:

$ ruby script/console

>> ActiveRecord::Base.connection.select_all 'show databases'

=> [{"Database"=>"activerecord_unittest"}, {"Database"=>"err_dev"} ...]

Now let’s save some typing by bottling this up in a method. To keep our

Rails-specific console methods all together, we’ll throw them in a file

called .railsrc in our home directory. Here’s our new method:

Download console/.railsrc

def sql(query)

ActiveRecord::Base.connection.select_all(query)

end

Then we just load up the .railsrc file from within our .irbrc file, which gets

loaded when script/console is run. So in .irbrc we have:

Download console/.irbrc

if ENV['RAILS_ENV']

load File.dirname(__FILE__) + '/.railsrc'

end

Now we can get at those hard to reach places with ease:

$ ruby script/console

>> sql 'show databases'

=> [{"Database"=>"activerecord_unittest"}, {"Database"=>"err_dev"} ...]

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/console/.railsrc
http://media.pragprog.com/titles/fr_arr/code/console/.irbrc

30. WRITIN’ CONSOLE METHODS 158

Windows Note

On Windows, .irbrc should be kept in C:\Documents and Set-

tings\YourWindowsUsername. The HOME environment variable
should then be set to that directory’s path.

The console is your friend, and it’s also extensible, so extend it!

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=158

Snack Recipe 31

Console Loggin’

By day, PJ Hyett and Chris Wanstrath run the Rails consulting and training firm, Err

Free. By night, they maintain Err the Blog, a running commentary on both Ruby

and Rails.

When you’re playing around in script/console, it’s sometimes helpful to

know which database queries are actually being run. No big deal, all

we need to do is tell ActiveRecord that instead of using Rails’ default

logger, it should use a custom logger pointed at STDOUT (your terminal).

These two lines do the trick:

ActiveRecord::Base.logger = Logger.new(STDOUT)

ActiveRecord::Base.clear_active_connections!

Let’s stick ’em in our .railsrc32 file, and add a couple methods to turn

logging on and off:

Download console/.railsrc

def loud_logger

set_logger_to Logger.new(STDOUT)

end

def quiet_logger

set_logger_to nil

end

def set_logger_to(logger)

ActiveRecord::Base.logger = logger

ActiveRecord::Base.clear_active_connections!

end

As a matter of interest, there’s an alternative way to set the active logger

which does not clear the active database connections:

def set_logger_to(logger)

ActiveRecord::Base.connection.instance_variable_set(:@logger, logger)

end

Now when we want to sneak a peek at the SQL ActiveRecord is running,

we call loud_logger from within script/console:

$ ruby script/console

>> User.find(:first)

=> #<User id: 1 ...>

32. This is the file we created in Sorbet 30, Writin’ Console Methods, on page 157

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/console/.railsrc

31. CONSOLE LOGGIN’ 160

>> loud_logger

=> {}

>> User.find(:first)

User Load (0.000613) SELECT * FROM users LIMIT 1

=> #<User id: 1 ...>

>> quiet_logger

=> {}

>> User.find(:first)

=> #<User id: 1 ...>

That works great if we’re only interested in seeing the SQL. But let’s say

we’re pretending to be a casual web surfer by issuing faux-requests to

Rails using the app console helper:

$ ruby script/console

>> app.get '/people'

=> 200

During that request a bunch of stuff happened behind the scenes and

got stuck in development.log. So let’s go a step further and turn on

system-wide logging in the console33. Chuck this in your .railsrc file to

make the console logger get set up before Rails does its thing:

require 'logger'

Object.const_set(:RAILS_DEFAULT_LOGGER, Logger.new(STDOUT))

Now everything Rails would normally log to development.log is now

logged to our terminal:

$ ruby script/console

>> app.get '/people'

Processing PeopleController#index...

Session ID: BAh7BiIKZmxhc2hJQz...

Parameters: {"action"=>"index", "controller"=>"people"}

Person Load (0.000630) SELECT * FROM `people`

Rendering template within layouts/people

Rendering people/index

Completed in 0.00949 (105 reqs/sec) | Rendering: 0.00180 (18%) |

DB: 0.00063 (6%) | 200 OK [http://www.example.com/people]

=> 200

33. Thanks to Tim Lucas for this trick: http://toolmantim.com/article/2007/2/6/system_wide_script_console_logging

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://toolmantim.com/article/2007/2/6/system_wide_script_console_logging
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=160

Snack Recipe 32

Playin’ in the Sandbox

By day, PJ Hyett and Chris Wanstrath run the Rails consulting and training firm, Err

Free. By night, they maintain Err the Blog, a running commentary on both Ruby

and Rails.

The console is great for playing around with your models and con-

trollers. It’s not nearly as much fun, though, if you have to worry about

goofing something up.

No worries. The - -sandbox switch has our back. What it does, surpris-

ingly, is sandbox your data for the duration of your script/console ses-

sion. Here, let’s try to wreck a sand castle:

$ ruby script/console --sandbox

Loading development environment in sandbox

Any modifications you make will be rolled back on exit

>> Castle.destroy 1

=> #<Castle id: 1, ...>

>> Castle.find(1)

ActiveRecord::RecordNotFound: Couldn't find Castle with ID=1

>> exit

Uh oh. Thankfully the sandbox automatically pushes the UNDO button

at the end—it runs everything within a database transaction. So any

rows we modify or delete for the duration of the script/console session

will be returned to their original state on exit. Let’s check:

$ ruby script/console

Loading development environment

>> Castle.find(1)

=> #<Castle id: 1, ...>

Whew!

Tracking down a hard-to-isolate bug with your before_destroy callback?

Playing with the idea of mass-updating data? Examining a copy of pro-

duction data on your staging database? The - -sandbox switch is the

way to go. To play it safe, you may want to get in the habit of always

running in sandbox mode when poking around your production envi-

ronment. Then when you really need to change production data, you

can switch back to the live console.

Prepared exclusively for Jeanne McDade

Snack Recipe 33

Accessin’ Helpers

By day, PJ Hyett and Chris Wanstrath run the Rails consulting and training firm, Err

Free. By night, they maintain Err the Blog, a running commentary on both Ruby

and Rails.

By now you’ve discovered that the console isn’t just our friend, it’s also

a power tool. It slices, it dices, and it even knows how to call view

helpers. The appropriately named helper object can be used to play with

any of Rails’ default helper methods, like this:

$ ruby script/console

>> helper.pluralize(3, 'blind mouse')

=> "3 blind mice"

>> helper.submit_tag('Do it!')

=> "<input name=\"commit\" type=\"submit\" value=\"Do it!\" />"

>> helper.visual_effect :blindUp, :post

=> "new Effect.BlindUp(\"post\",{});"

This is handy for messin’ around with built-in view helpers, but in the

old days it had one problem: the helper object didn’t know about our

app-specific helpers. Hey, but it’s a new day. Now in Rails 2.0 the sky

has opened.

If we want to call any helper method defined in our ApplicationHelper,

the methods are right there:

$ ruby script/console

>> helper.some_method_from_application_helper

=> true

We run into problems though when trying to use the helper object to

play with our other helpers. They’re not included by default. But we

can fix that. If we want to call any of the methods in our PeopleHelper,

for example, we just give the helper object some, er, help:

>> helper :people

=> #<Object:0x18ab44c ...>

>> helper.some_method_from_people_helper

=> true

Just like that, we can call any of our app-specific view helpers through

the helper object. Rinse and repeat for any other helper modules you

wanna access.

Prepared exclusively for Jeanne McDade

Snack Recipe 34

Shortcuttin’ the Console

Once you get addicted, you’ll never want to leave the console. Creating

little console shortcuts can boost your productivity, and make you look

cool when demoing at conferences. Here’s a fun one.

Let’s say our fingers are worn out from typing Order.find(:first) in the con-

sole. Instead, we want to type order(:first). In other words, order(*args)

should simply be an alias for Order.find(*args).

Now, we want that to work for all models in our current application,

generically. It sounds difficult, but it’s actually quite easy with a bit of

meta-programming:

Download console/.railsrc

def define_model_find_shortcuts

model_files = Dir.glob("app/models/**/*.rb")

table_names = model_files.map { |f| File.basename(f).split('.')[0..-2].join }

table_names.each do |table_name|

Object.instance_eval do

define_method(table_name) do |*args|

table_name.camelize.constantize.send(:find, *args)

end

end

end

end

Using instance_eval we define a shortcut method for every model in our

app, which then simply passes the buck on to the real find find method.

We define the shortcuts on the Object class so that script/console can

call the methods directly, as if they were built right into the console.

Then we need to make sure our define_model_find_shortcuts method is

run when we fire up the console, but after all the Rails helpers have

been loaded. It turns out irb has a neat configuration option for this:

Download console/.railsrc

IRB.conf[:IRB_RC] = Proc.new { define_model_find_shortcuts }

The IRB.conf[:IRB_RC] configuration value takes a Proc object, which irb

will dutifully run whenever the context is changed. Sometime after Rails

loads, the context changes and our shortcuts get defined. Toss all this

code in our .railsrc file34, and we can call the shortcuts with any standard

34. This is the file we created in Sorbet 30, Writin’ Console Methods, on page 157

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/console/.railsrc
http://media.pragprog.com/titles/fr_arr/code/console/.railsrc

34. SHORTCUTTIN’ THE CONSOLE 164

finder options:

$ ruby script/console

>> order(:first)

=> #<Order id: 1 ...>

>> order(1)

=> #<Order id: 1 ...>

>> order(:all)

=> [#<Order id: 1 ...>]

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=164

Part IX

Testing

165
Prepared exclusively for Jeanne McDade

Recipe 35

Creating Your Own Rake Test

Tasks

Problem

Not all tests are created equal. Some run fast, some slow. Most can be

run while you’re on an airplane, but some may need a network connec-

tion. Of course, all of them should pass all the time. But when you’re

working on code that has fast, localized tests, you don’t want the slow,

networked tests to get in your way. Instead, you want to organize the

tests around what they need and how frequently they’re run.

Solution

Rails provides default Rake tasks for running unit, functional, and inte-

gration tests. If we run rake test:units, for example, all the tests in the

test/unit directory are run in batch. But what if we have a suite of tests

that don’t naturally fit into one of the three test buckets? Well, we make

a new bucket.

Let’s say we have a performance-critical algorithm in our application.

It must run within a second or users start shopping around for a new

site (and we end up shopping around for a new job). The trouble is, this

algorithm is fairly sensitive to changes. So we write a test that uses the

Benchmark library to time how long the algorithm takes to run. If we

introduce a change that slows it down too much, the test will let out a

yelp. Here’s what it looks like:

Download buffet/test/performance/perf_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'benchmark'

class PerfTest < Test::Unit::TestCase

def test_performance_critical_code

time = Benchmark.realtime do

run code that should not

take more than 1.0 seconds

end

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/test/performance/perf_test.rb

35. CREATING YOUR OWN RAKE TEST TASKS 167

assert time <= 1.0

end

end

Now, we could have put this file in the test/unit directory, but we want

our unit tests to run as fast as possible. So we put the performance test

file in the test/performance directory to keep it away from all the other

tests.

Next we need to create a Rake task that runs all the performance tests

in batch. Add this task definition to any file with a .rake extension in

the lib/tasks directory:

Download buffet/lib/tasks/testing.rake

namespace :test do

Rake::TestTask.new(:performance => "db:test:prepare") do |t|

t.libs << "test"

t.pattern = 'test/performance/**/*_test.rb'

t.verbose = true

end

Rake::Task['test:performance'].comment =

"Run the performance tests in test/performance"

end

This code is very similar to how the default Rails testing tasks are cre-

ated. The only difference is the name of the target and the directory.

So now we can quickly run all the unit tests, and whenever we’re mess-

ing around with that performance-critical algorithm, we can also explic-

itly run the performance tests:

$ rake test:performance

You can create as many of these testing buckets as you need. For exam-

ple, we might also have a suite of tests for the code we use to validate

e-mail addresses. Checking the e-mail domain name requires a good

network connection. So let’s just add another Rake task for all the

network-related tests:

Download buffet/lib/tasks/testing.rake

Rake::TestTask.new(:network => "db:test:prepare") do |t|

t.libs << "test"

t.pattern = 'test/network/**/*_test.rb'

t.verbose = true

end

Rake::Task['test:network'].comment =

"Run the network tests in test/network"

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/lib/tasks/testing.rake
http://media.pragprog.com/titles/fr_arr/code/buffet/lib/tasks/testing.rake
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=167

35. CREATING YOUR OWN RAKE TEST TASKS 168

So now when we’re on an airplane, we can run rake and all the unit and

functional tests will pass. Then when we’ve jacked into the ’net, we can

explicitly run the network tests:

$ rake test:network

Discussion

Of course, you want to run all your tests at least once per day to detect

problems before they compound into bigger messes. Creating custom

Rake tasks makes it easy to run logical groups of tests on an automated

schedule based on when you need feedback. Here’s an example build

schedule:

• Unit and functional tests run every 5 minutes

• Integration tests run every hour

• Network tests run every 4 hours

• Performance tests run at 2 a.m. daily

If you’re not already testing your code on a recurring schedule, check

out CruiseControl.rb35 to get started in minutes.

35. http://cruisecontrolrb.thoughtworks.com/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://cruisecontrolrb.thoughtworks.com/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=168

Recipe 36

Testing JavaScript With

Selenium

By Marty Haught, Andrew Kappen, Chris Bernard, Greg Hansen (http://www.logicleaf.com/)

Marty, Andrew, Chris and Greg all work together at Logicleaf, an agile software consulting

company. On one of their projects, savemycoupons.com, they developed several stream-

lined testing processes that included a simpler way to integrate Selenium into the daily

development cycle.

Problem

Your application uses AJAX for a creamy smooth user experience. Debug-

ging JavaScript can be a royal pain, so you’d rather put some tests

in place that will catch JavaScript bugs before they fall through the

cracks.

Ingredients

• The Selenium on Rails plugin

$ script/plugin install←֓

http://svn.openqa.org/svn/selenium-on-rails/selenium-on-rails

• Windows users should also install the win32-open3 gem

$ gem install win32-open3

Solution

Let’s say our application has a login link, that when clicked drops a

login form into an empty div. There are many ways to pull off this sort

of dynamic page manipulation, but they all rely on JavaScript to do the

heavy lifting. Here’s what the view looks like:

Download TestingJSWithSelenium/app/views/users/index.html.erb

<script type="text/javascript">

function show_form() {

form_text = '<form action="/users/login">' +

'<p>User Id: <input name="user_id" type="text"></p>' +

'<p>Password: <input name="password" type="password"></p>' +

'<input value="Submit" type="submit"></form>'

$('form_area').update(form_text)

}

</script>

Prepared exclusively for Jeanne McDade

http://www.logicleaf.com/
http://media.pragprog.com/titles/fr_arr/code/TestingJSWithSelenium/app/views/users/index.html.erb

36. TESTING JAVASCRIPT WITH SELENIUM 170

<div id="intro">

<p id="intro_text">

Do you want to see this page?

Just click <%= link_to_function("login", "show_form()") %>.

</p>

</div>

<div id="form_area">

</div>

This is all fairly ordinary stuff. The interesting part is figuring out how

to test it, and the implementation suggests a few things we need to

verify:

1. Rendering the page displays a login link, but no login form

2. Clicking the login link displays the login form

3. Logging in displays the correct dynamic content on the resulting

page

We can handle two of these with a good batch of assert_select calls in a

functional test:

Download TestingJSWithSelenium/test/functional/users_controller_test.rb

def test_index

get :index

assert_response :success

assert_template 'index'

assert_select "div#intro p#intro_text a[href='#']", 'login'

assert_select "div#form_area", 1

no form inputs in the div yet

assert_select "div#form_area input[name='user_id']", 0

end

def test_login

post :login, :user_id => 'Joe', :password => 'password'

assert_response :success

assert_template 'home'

assert_select "h1.heading", "Thank you for logging in, Joe!"

end

The test_index method covers the first requirement nicely: When the

page is rendered it has a login link, but no login form is visible. If the

form_area div were mistakenly commented out, for example, this test

would fail. And the third requirement is covered, too: After a login, we

see the user name on the resulting page.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/TestingJSWithSelenium/test/functional/users_controller_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=170

36. TESTING JAVASCRIPT WITH SELENIUM 171

So that leaves us with the second requirement: testing the execution of

the JavaScript which displays the login form. To do that, we really need

an execution environment for JavaScript code.

Selenium36 gives us such an environment. It embeds a JavaScript-

based test engine within a running browser. And as a nice bonus, it

lets us do cross-browser testing. That said, Selenium is a general pur-

pose web testing tool and needs a little coaxing to integrate into a Rails

application. The selenium-on-rails plugin makes it seamless.

OK, so let’s start by generating a stub Selenium test file:

$ script/generate selenium login_test.rsel

Specifying the .rsel extension lets us write the test using a thin Ruby

wrapper for the client-side JavaScript functions37 Selenium uses to

manipulate the browser. We like Ruby.

Then we fill out the file with a mix of assertions and commands to the

browser:

Download TestingJSWithSelenium/test/selenium/login_test.rsel

open '/users'

assert_text "css=div#intro p#intro_text a[href='#']", "login"

assert_element_present "css=div#form_area"

click "link=login"

wait for any form text input to appear

wait_for_element_present "css=div#form_area input"

assert_element_present "css=div#form_area input[type='text'][name='user_id']"

assert_element_present "css=div#form_area

input[type='password'][name='password']"

type "css=div#form_area input[type='text'][name='user_id']", "Joe"

type "css=div#form_area input[type='password'][name='password']", "pass"

click "css=div#form_area input[type='submit']"

wait_for_page_to_load 3000

assert_text "css=h1.heading", "Thank you for logging in, Joe!"

The login_test.rsel file looks similar to the functional test we looked through

earlier, but we’re speaking the RSelenese lingo38 here. And this time we

can run our JavaScript code. The tests clicks the login link and then

we wait for any input fields to appear in the form_area div. Then we

36. http://OpenQA.org

37. http://release.openqa.org/Selenium-core/0.8.0/reference.html

38. The RSelenese documentation can be found in vendor/plugins/Selenium-on-

rails/doc/index.html

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/TestingJSWithSelenium/test/selenium/login_test.rsel
http://OpenQA.org
http://release.openqa.org/Selenium-core/0.8.0/reference.html
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=171

36. TESTING JAVASCRIPT WITH SELENIUM 172

Starting the App on a Mac

If you’re a Mac OS X user, one handy configuration setting is
start_server. If it’s true, then running rake test:acceptance will start
your Rails application in test mode before running the Selenium
test suite. Currently this setting is not reliable under Windows and
you must manually launch the application in test mode before
starting the acceptance tests.

Running Tests in the Browser

The selenium-on-rails plugin also lets you manually run specific
tests from within the browser. Just launch your Rails applica-
tion in test mode and browse to http://localhost:3000/selenium.
The Selenium IDE FireFox plugin is also worth trying. It lets you
(or a non-programmer friend) record a test interactively and
export it in a format usable by the selenium-on-rails plugin. See
the Selenium website for more details.

can go ahead and test the actual login process by typing a user_id and

password and clicking the submit button. By default the click method

is asynchronous, so we must call wait_for_page_to_load. (RSelenese also

dynamically adds xxx_and_wait commands for each action, so we could

just call click_and_wait in a one-liner.) Finally we check for the expected

dynamic content on the resulting page.

Now let’s see how it all comes together by running the test in the

browser. Selenium looks for a config.yml file in the selenium-on-rails plugin

directory to tell it which browser(s) to run. Copy the config.yml.example

and edit it for your environment. Then start the Rails application in test

mode:

$ ruby script/server -e test

Now run the Selenium tests:

$ rake test:acceptance

If everything is configured correctly you’ll see invisible fingers run through

your test script using each configured browser in turn. When every-

thing finishes you should see test successes for each browser.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://localhost:3000/selenium
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=172

36. TESTING JAVASCRIPT WITH SELENIUM 173

That’s cool, but when a test passes the first time it makes us doubt

that it did anything. So it’s time to break some JavaScript and see what

happens. In index.html.erb, remove the + sign at the end of the line that

generates the password input field. This will generate an incomplete

form, and it breaks the application in a subtle way. The functional test

will still pass, but the Selenium test fails. Even better, the Selenium

test catches the missing submit button when we attempt to click it,

even though we neglected to pro-actively check for its existence in the

test. By implicitly checking the existence of a form control when manip-

ulating it, we can remove the brittle assertion on the view’s structure

and just simulate the desired interactions.

Now we have a test that fully validates our custom JavaScript in a

concise syntax. We’ve found that testing workflow across several pages

is made much easier by Selenium and lends itself to writing a testing

language that naturally expresses what a user is really doing instead

of focusing on low level functions of the HTML inner workings. Better

yet, this allows us to rewrite the implementation without forcing us to

rewrite our brittle functional and integration tests.

Discussion

Running Selenium tests generally take a while longer than functional

or integration tests. Because of the slow feedback loop, Selenium is not

really a good choice for test-driven development. For the same reason,

you may not want to rely on Selenium as your only (or primary) test-

ing layer. For best results, and a restful night’s sleep, run a nightly

Selenium smoke test.

One current drawback to the selenium-on-rails plugin is that it requires

that you do not have any open browser windows. If you launch rake:test:acceptance

with an open Firefox window, for example, an error pops asking you to

close the window. And even when you do, the tests may not run com-

pletely. Hopefully this issue will be addressed in a future version of the

plugin.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=173

Recipe 37

Mocking With a Safety Net

By Kevin Clark (http://glu.ttono.us)

Kevin Clark is a Ruby hacker. He was a founder of SanDiego.rb, an author of Heckle, and

blogs at http://glu.ttono.us. He is currently building tools and infrastructure in Ruby at Pow-

erset in San Francisco and writing a book on testing Rails applications for the Pragmatic

Programmers.

Problem

You’re writing tests for bits of code that are going to hit an external

service (or three) and you’re using mocks and stubs with Mocha39 or

FlexMock40 to return canned data. But let’s face it, everyone forgets

to set up a mock on occasion. So you need to make sure remote calls

aren’t made on accident while the tests run.

Solution

Let’s say we’re using the AWS::S3 library41 to store and fetch files from

Amazon’s S3 service. In our application we’re making calls to the AWS::S3::S3Object

class to query S3. During testing, we don’t want to make any requests

to the S3 service. Instead, all calls to S3Object should let us know by

raising an exception.

Rails gives us a clever way to solve this with its test/mocks directories. In

testing, the test/mocks/test directory is added to the front of $LOAD_PATH.

This means that if we create a file called s3.rb in test/mocks/test, and

then require ’s3’ in our application, the s3.rb file in test/mocks/test will be

loaded instead of the “real” file.

Suppose we have require ’aws/s3’ in our environment.rb file to load the legit

S3 library. We need to mimic that path structure in our test/mocks/test

directory. Here’s what our mock s3.rb file looks like:

Download buffet/test/mocks/test/aws/s3.rb

module AWS

module S3

class S3Object

def self.method_missing(action, *args)

39. http://mocha.rubyforge.org/

40. http://onestepback.org/software/flexmock/

41. http://amazon.rubyforge.org/

Prepared exclusively for Jeanne McDade

http://glu.ttono.us
http://glu.ttono.us
http://media.pragprog.com/titles/fr_arr/code/buffet/test/mocks/test/aws/s3.rb
http://mocha.rubyforge.org/
http://onestepback.org/software/flexmock/
http://amazon.rubyforge.org/

37. MOCKING WITH A SAFETY NET 175

raise "You forgot to stub #{action}!"

end

end

end

end

This file is the only version of the S3Object class that gets loaded during

testing. And since we haven’t defined any methods in this version, all

calls to it will end up going to the method_missing method. It just raises

an exception, and that’s exactly what we want!

Now let’s say we have a test that directly (or indirectly) tries to use the

S3 service:

Download buffet/test/unit/s3_test.rb

def test_s3_call_will_raise_exception

picture = AWS::S3::S3Object.find 'headshot.jpg', 'photos'

end

Running it gives us an error, of course:

1) Error: test_s3_call_will_raise_exception(S3Test):

RuntimeError: You forgot to stub find!

...

test/unit/s3_test.rb:7:in `test_s3_call_will_raise_exception'

Now we know exactly where we’re missing a stub, and we have a failing

test that should pass when the stub is in place.

Discussion

Providing an alternate implementation of an entire class is often too

heavy handed and you’ll want to be more surgical about which methods

of a class raise an exception when you forget to mock. In those cases,

instead of using the method_missing trick, you probably want to require

the original class in your mock version, open the class, and redefine

specific methods.

The other thing to note about this example is that we implemented

method_missing on the S3Objectclass by defining self.method_missing. In

many cases you want to make sure methods on an instance aren’t

called rather than on the class. In those cases you shouldn’t define

method_missing on self.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/test/unit/s3_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=175

Recipe 38

Getting Started with BDD

Problem

You’ve heard about behavior-driven development (BDD) and you want

to give it an honest try, but you want to start with a low-ceremony

testing library that plays nicely with all your existing Test::Unit tests.

Ingredients

• The latest revision of the Shoulda plugin:

$ svn export https://svn.thoughtbot.com/plugins/shoulda/tags/rel-3.0.4

←֓

vendor/plugins/shoulda

Solution

The Shoulda plugin42 is a thin layer of BDD-style syntax on top of

Test::Unit that allows us to seamlessly mix it in with our existing Test::Unit

tests and tools. Plus we get a handy set of macros for testing Rails apps

that keep our test code concise.

In the BDD style, we start by expressing the behavior we want our code

to have before writing the code. And we do this in small, incremental

steps. So let’s say we need a model that represents an event, you know,

like a party. We start by creating a regular Rails unit test:

Download events/test/unit/event_test.rb

class EventTest < Test::Unit::TestCase

end

Now it’s time to really think about events. What are they? Well, for

starters an event should have a number of required attributes, and the

name attribute should always be unique. Here’s how we express that

with Shoulda’s validation helpers inside of our unit test file:

Download events/test/unit/event_test.rb

class EventTest < Test::Unit::TestCase

should_require_attributes :name, :description, :image_location,

:starts_at, :location, :capacity

42. http://thoughtbot.com/projects/shoulda

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/unit/event_test.rb
http://media.pragprog.com/titles/fr_arr/code/events/test/unit/event_test.rb
http://thoughtbot.com/projects/shoulda

38. GETTING STARTED WITH BDD 177

should_require_unique_attributes :name

end

Now let’s add some more expectations. The price should be a positive

number, of course:

Download events/test/unit/event_test.rb

should_only_allow_numeric_values_for :price

should_not_allow_values_for :price, -1.0,

:message => /must be greater than or equal to 0/

Oh, and real people attend events, so an event should have a many-to-

many relationship with attendees:

Download events/test/unit/event_test.rb

should_have_many :attendees, :through => :registrations

Hey, that’s a lot of thinking and we haven’t even written the code to

make our expectations pass. Now, before writing the code, a card-

carrying BDDer would first run all the tests and watch them fail. Better

yet, they would have done it stepwise: written one assertion, watched

it fail, and then written the code. Unfortunately that makes for some

fairly tedious reading material. So let’s go ahead and create the Event

model with all the validations and associations we need:

Download events/app/models/event.rb

class Event < ActiveRecord::Base

validates_presence_of :name, :description, :image_location,

:starts_at, :location, :capacity

validates_uniqueness_of :name

validates_numericality_of :price, :greater_than_or_equal_to => 0.0

has_many :registrations

has_many :attendees, :through => :registrations,

:source => :user

end

Then we run the unit test using any of the standard tools and celebrate

a small victory of programming!

Depending on how much or little you know about what you want, you

might break this test-code cycle down into snappier feedback loops.

Personally, I like a steady diet of programmer treats so I would have

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/unit/event_test.rb
http://media.pragprog.com/titles/fr_arr/code/events/test/unit/event_test.rb
http://media.pragprog.com/titles/fr_arr/code/events/app/models/event.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=177

38. GETTING STARTED WITH BDD 178

done this in two quick steps: one for the validations and one for the

associations.

Moving onward, an event should be free when its price is $0. Now we’re

talking about Event objects, so we’ll need one to test against. And we’ll

need that object for other tests, as well. So we’ll use a context to set

that up:

Download events/test/unit/event_test.rb

context "An event" do

setup do

@event = events(:rails_studio)

end

should "be free when the price is $0" do

@event.price = 0

assert_equal true, @event.free?

end

should "not be free when the price isn't $0" do

@event.price = 1.0

assert_equal false, @event.free?

end

end

The context block is just a name for the enclosing scenario, if you will.

In this context, we’re dealing with an Event object which we initialize

in the setup block. The should block is a way of creating a test with

a meaningful name. In fact, should blocks just create regular Test::Unit

test methods behind the scenes. Inside the should blocks we can use

any Test::Unit assertions, common assertions that come with Shoulda, or

custom assertions we write.

Now to make it pass, we need to add some code to the Event model:

Download events/app/models/event.rb

def free?

self.price == 0

end

One fairly unique feature of Shoulda is nested contexts. Say we’re now

thinking through the behavior of event capacity. We’ll need a couple of

tests that require an event arranged a certain way. To do that, we just

create a new context block within the one we already have, and define a

setup block that tweaks the existing @event object a little:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/unit/event_test.rb
http://media.pragprog.com/titles/fr_arr/code/events/app/models/event.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=178

38. GETTING STARTED WITH BDD 179

Download events/test/unit/event_test.rb

context "An event" do

setup do

@event = events(:rails_studio)

end

context "with excess capacity" do

setup do

@event.capacity = 2

@event.registrations = [registrations(:fred_for_rails)]

end

should "have spaces remaining" do

assert_equal 1, @event.spaces_remaining

end

should "not be sold out" do

assert_equal false, @event.sold_out?

end

end

end

What we end up with here is something fairly readable: An event with

excess capacity should not be sold out. We’re also able to share the

cumulative setup blocks which helps remove duplication in our tests.

The setup blocks for the contexts are run in order and before each should

block. First the @event object is initialized, then its capacity and regis-

trations are assigned, and finally the should block is run. We’ll leave the

code that makes it pass to you, dear reader.

We can also mix Shoulda tests in with our existing functional tests, and

again use Shoulda macros to keep the code concise. Here’s how we’d

express what a show action should do:

Download events/test/functional/events_controller_test.rb

context "showing an event" do

setup { get :show, :id => events(:rails_studio) }

should_assign_to :event

should_respond_with :success

should_render_template :show

should_not_set_the_flash

end

Shoulda, woulda, coulda. Now you can!

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/unit/event_test.rb
http://media.pragprog.com/titles/fr_arr/code/events/test/functional/events_controller_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=179

38. GETTING STARTED WITH BDD 180

Discussion

There’s also a stripped-down gem version43 for non-Rails projects, which

just includes contexts and should blocks.

Also See

test/spec44 is another lightweight BDD library that maps many of the

standard Test::Unit assertions to a ’should’-like syntax.

43. http://shoulda.rubyforge.org

44. http://chneukirchen.org/repos/testspec/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://shoulda.rubyforge.org
http://chneukirchen.org/repos/testspec/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=180

Recipe 39

Describing Behaviour from

the Outside-In With RSpec

By David Chelimsky (http://blog.davidchelimsky.net/)

David Chelimsky is the lead developer of RSpec and also leads software development

at Articulated Man, Inc, in Chicago, IL. Prior to joining Articulated Man, David developed

and taught courses in OO Design, Test Driven Development and Refactoring with Object

Mentor, Inc. In addition to exploring Ruby, Rails and Behaviour Driven Development, David

likes to play guitar and is learning to speak português.

Problem

You’ve heard a little bit about Behaviour Driven Development and RSpec.

You want to see what it’s all about, but you don’t know how to get

started.

Ingredients

• The RSpec45 plugin:

$ script/plugin install ←֓

http://rspec.rubyforge.org/svn/tags/CURRENT/rspec

• The RSpec rspec_on_rails plugin:

$ script/plugin install ←֓

http://rspec.rubyforge.org/svn/tags/CURRENT/rspec_on_rails

RSpec maintains a CURRENT tag, which will always get you the latest

release.

Solution

RSpec supports Behaviour Driven Development, which is basically Test

Driven Development with more natural, behaviour-centric language.

That’s a mouthful, but it’s really quite simple. In BDD we write Exe-

cutable Examples of how an object should behave, and then write the

code that makes that object behave correctly. We aim to make each

example concise and focused on a single facet of behaviour of the object

being described.46 Let’s dive right in.

45. http://rspec.rubyforge.org

46. In BDD, we say we are describing the behaviour of an object rather than testing it.

Prepared exclusively for Jeanne McDade

http://blog.davidchelimsky.net/
http://rspec.rubyforge.org

39. DESCRIBING BEHAVIOUR FROM THE OUTSIDE-IN WITH RSPEC 182

First we need to bootstrap RSpec into our Rails application:

$ script/generate rspec

create spec

create spec/spec_helper.rb

create spec/spec.opts

create spec/rcov.opts

create script/spec_server

create script/spec

create stories

create stories/all.rb

create stories/helper.rb

RSpec is under constant development, so you may see slightly differ-

ent output depending on which version you are using. The important

pieces for this recipe are the script/spec script, the spec directory, and

the spec/spec_helper.rb file.

Then to make sure everything is happy, let’s run the examples using the

script/spec command, which is installed with the rspec_on_rails plugin:

$ ruby script/spec spec

Finished in 0.00995 seconds

0 examples, 0 failures

Great, now it’s time to start writing some executable examples. We’re

going to work from the outside-in: describe the behavior we want and

then write the code that satisfies the examples. What we want is a list

of names and e-mail addresses for people. So let’s start from scratch by

writing this example in spec/views/people/index.html.erb_spec.rb:

require File.join(File.dirname(__FILE__), "..", "..", "spec_helper.rb")

describe "/people/index.html.erb" do

it "should list all the good people in an unordered list" do

render '/people/index.html.erb'

response.should have_tag("ul") do

with_tag("li") do

with_tag("div", "First Person")

with_tag("div", "first@person.com")

end

with_tag("li") do

with_tag("div", "Second Person")

with_tag("div", "second@person.com")

end

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=182

39. DESCRIBING BEHAVIOUR FROM THE OUTSIDE-IN WITH RSPEC 183

end

There’s quite a bit going on here. Let’s take it step by step.

First, the describe method creates an object that’s similar to a test case.

The it method creates an object that’s similar to a test method.

The render method does just what it says: renders the view template.

RSpec uses a custom controller to render views based solely on their

paths, which is why we need to supply the full path relative to app/views.

The meat of the example is where we express Expectations47 about the

HTML that should be rendered by the view. Expectations are intended

to be easy to read. So we’re saying that the response should have a

ul tag, and inside that tag we should find other tags that list out the

people. By way of comparison, we could describe the same behavior

using assert_select method that comes with Rails, like so:

assert_select("ul") do

assert_select("li") do

assert_select("div", "First Person")

assert_select("div", "first@person.com")

end

assert_select("li") do

assert_select("div", "Second Person")

assert_select("div", "second@person.com")

end

end

So now with the example written, let’s go ahead and run the examples

again, this time with the spec task that comes with the plugin:

$ rake spec

Hrm, we get an ActionController::MissingTemplate error. To resolve that

error, we just need to create the template app/views/people/index.html.erb.

Let’s leave it blank for now and run the examples again. This time we’ll

use

$ rake spec

Expected at least 1 element matching "ul", found 0.

Clearly we need some structure in our template. So let’s add the follow-

ing to app/views/people/index.html.erb:

<% for person in @people -%>

47. In BDD, we refer to Expectations instead of Assertions.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=183

39. DESCRIBING BEHAVIOUR FROM THE OUTSIDE-IN WITH RSPEC 184

<div><%= h person.full_name %></div>

<div><%= h person.email %></div>

<% end -%>

This time when we run the examples we get “You have a nil object

when you didn’t expect it!” from our @people instance variable. Well,

of course! There are no people. We have a view example and a view

template, but there are absolutely no models or controllers.

Let’s supply our view with the data that it needs, but let’s do it without

building out the other pieces. The view wants an array of @people, so

let’s just simulate one:

Download RSpec/spec/views/people/index.html.erb_spec.rb

require File.join(File.dirname(__FILE__), "..", "..", "spec_helper.rb")

describe "/people/index.html.erb" do

it "should list all the good people in an unordered list" do

assigns[:people] = [

stub("person1", :full_name => "First Person",

:email => "first@person.com"),

stub("person2", :full_name => "Second Person",

:email => "second@person.com")

]

render '/people/index.html.erb'

response.should have_tag("ul") do

with_tag("li") do

with_tag("div", "First Person")

with_tag("div", "first@person.com")

end

with_tag("li") do

with_tag("div", "Second Person")

with_tag("div", "second@person.com")

end

end

end

end

The assigns method lets us specify instance variables that will be avail-

able to the view. In this case there will be a @people instance variable

containing an array of two stub objects.48 Each stub object returns stub

48. RSpec comes with a built in mocking and stubbing framework. If you are already

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/RSpec/spec/views/people/index.html.erb_spec.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=184

39. DESCRIBING BEHAVIOUR FROM THE OUTSIDE-IN WITH RSPEC 185

(fake) values for full_name and email.

Now let’s come full circle by running the examples again:

$ rake spec

.

Finished in 0.081351 seconds

1 example, 0 failures

As a bonus, let’s list out all of our expectations:

$ ruby script/spec spec --format specdoc

/people/index.html.erb

- should list all the good people in an unordered list

Finished in 0.113134 seconds

1 example, 0 failures

And while we’re at it, let’s also generate a nice HTML report:

$ ruby script/spec spec --format html:rspec_report.html

All the things we expect our object to do are listed in the rspec_report.html

file.

That’s all there is to it—we’ve described our first bit of Rails behaviour

using RSpec. We started with a failing Executable Example, added the

code to make it pass, and did so without relying on the existence of any

controllers or models in our app.

In addition, without even thinking about it, we’ve discovered exactly

what our controller will need to provide for the view (a collection of

people) and that each person will need to have first_name and last_name

attributes. Imagine how powerful that can be when you’re dealing with

a complex model. This is what Outside-In is all about: we start with the

outermost layers and let them guide us all the way down to the low

level components of our applications.

familiar with either FlexMock or Mocha, you can use those instead.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=185

39. DESCRIBING BEHAVIOUR FROM THE OUTSIDE-IN WITH RSPEC 186

Discussion

We went through that example pretty quickly, but there are a few inter-

esting things that happened that we should talk about.

RSpec supports a philosophy that you should be able to describe each

component in isolation from each other. For this to work effectively,

you should include some level of integration testing 49 in your process.

If you don’t, it’s possible to get all of the objects working correctly in

isolation and then watch things fall apart when you fire up your appli-

cation.

If you’re experienced with TDD or BDD, you probably recognized that

starting with so much of the example was a bigger step than we nor-

mally take in practice. Doing TDD/BDD with discipline, we would start

with a much more granular step: perhaps a single line stating an expec-

tation that some specific text is rendered. Then we follow the errors

until the example passes, and then add more detail to the example, fol-

low the errors, get it to pass, rinse, repeat, until the passing example

expresses the detail that we see above.

Did you notice that we wrote the code in the view before the stubs?

Did that strike you as backwards? Well, it is backwards from how a lot

of people use stubs, but think about this: we started by expressing our

desired outcome, the list of people. That desired outcome led us to write

the code that we expect produce that outcome. It was only then, after

we wrote that code and could see it, that we knew exactly what stubs to

write. In the same way that the example expressed expectations of the

view, the view code expressed expectations of its environment, which

we then satisfied with the stubs.

Another thing you might have noticed is that the have_tag expectation

is very specific. It will fail unless the particular tags are present with the

correct nesting structure. This much detail tends to make the examples

quite brittle, meaning that the example needs to change every time the

HTML design changes.

Generally, the approach I take is to put in only the detail that has

relevant business value. For example, a form won’t work correctly if the

input elements are not nested inside the form element. For that reason

I’ll usually be specific about the structure of a form. Another case might

49. RSpec >= 1.1.0 supports integration testing with the Story Runner, including a wrap-

per for Rails integration tests.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=186

39. DESCRIBING BEHAVIOUR FROM THE OUTSIDE-IN WITH RSPEC 187

be that there is javascript and/or CSS that will fall apart if things aren’t

structured in a specific way. Again, depending on the business value of

that javascript or CSS, I might include that detail.

RSpec does express some opinions. In this example, the fact that we

could render a view with no underlying controller and model is quite

frightening to some who aren’t experienced with this style of testing.

Rails’ functional tests express a different opinion, that you should run

all the pieces in each of your tests to make sure they all work together.

If you prefer that approach, you can achieve this with RSpec using

RSpec’s Controller Examples in Integration Mode.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=187

Recipe 40

Reducing Dependencies with

Mocks

By Matthew Bass (http://matthewbass.com)

Matthew Bass is an independent software developer who has been enjoying the free-

dom of Ruby for many years now. He is a speaker, agile evangelist, and Mac addict. He

co-organizes the Ruby Meetup in his home town of Raleigh, North Carolina and blogs at

matthewbass.com.

Problem

Your functional tests always seem to be breaking, and for the wrong

reasons. It’s usually because someone changed an implementation detail

down in a model. You need to reduce the dependencies your controllers

have on the rest of the system, but how do you do it without adding a

bunch of special testing hooks?

Ingredients

• The FlexMock gem50:

$ gem install flexmock

Solution

Say we have a model with a wee bit of validation:

Download MockingCornerCases/app/models/gadget.rb

class Gadget < ActiveRecord::Base

validates_presence_of :name, :price

end

And we also have a typical controller action for creating a gadget, some-

thing like this:

Download MockingCornerCases/app/controllers/gadgets_controller.rb

def create

@gadget = Gadget.new(params[:gadget])

if @gadget.save

flash[:notice] = "Gadget was successfully created."

50. http://onestepback.org/software/flexmock/

Prepared exclusively for Jeanne McDade

http://matthewbass.com
http://media.pragprog.com/titles/fr_arr/code/MockingCornerCases/app/models/gadget.rb
http://media.pragprog.com/titles/fr_arr/code/MockingCornerCases/app/controllers/gadgets_controller.rb
http://onestepback.org/software/flexmock/

40. REDUCING DEPENDENCIES WITH MOCKS 189

redirect_to @gadget

else

flash[:error] = "Whoops, gadget couldn't be created."

render :action => "new"

end

end

Being good little programmers, we have a functional test for the action:

Download MockingCornerCases/test/functional/gadgets_controller_test.rb

def test_should_create_gadget

assert_difference('Gadget.count') do

post :create, :gadget => { :name => "Chronometer", :price => 6 }

end

assert_not_nil assigns(:gadget)

assert_not_nil flash[:notice]

assert_redirected_to gadget_path(assigns(:gadget))

end

However, we’re only verifying that the action does the right thing if the

gadget can be saved. We don’t have a test for what happens if the gadget

cannot be saved. And running rcov tells us that we’re pretty bad about

testing corner cases like this in general. Hmph.

Now, to test the failure case we could pass an empty hash to the create

action. Since our model is validating the presence of the name and price

attributes, the save would fail.

But that would make our test a tad brittle. If we were to remove the

gadget validations in future, our failure test case would fail. In other

words, our test is too tightly coupled to the presence of validations in

our model. Instead, our test should be verifying one thing and one thing

only: that if the gadget fails to save, the controller handles that failure

correctly.

So let’s simulate a failure by introducing a mock object into the mix.

First we need to require FlexMock’s Test::Unit helper inside our test/test_helper.rb

file:

require "flexmock/test_unit"

Next, we need to mock the save method on new instances of our Gadget

class. The save method should return false so it triggers our failure

condition:

Download MockingCornerCases/test/functional/gadgets_controller_test.rb

def test_create_invalid_gadget_fails

flexmock(Gadget).new_instances.should_receive(:save).

once.and_return(false)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MockingCornerCases/test/functional/gadgets_controller_test.rb
http://media.pragprog.com/titles/fr_arr/code/MockingCornerCases/test/functional/gadgets_controller_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=189

40. REDUCING DEPENDENCIES WITH MOCKS 190

post :create, :gadget => { }

assert_not_nil assigns(:gadget)

assert_response :success

assert_template 'new'

assert_not_nil flash[:error]

end

This test won’t break if we change validations on the Gadget model.

In fact, the save fails regardless of the parameters we POST to the

create action. And that’s exactly what we want. We aren’t concerned

with the internals of the Gadget model or whether or not the save

method is actually working. We have unit tests for that. In our func-

tional test, we’re only concerned with how our controller responds when

save returns false. The use of a mock lets us precisely control our gad-

gets so they behave in a predictable way.

This is all well and good, but after writing failure tests for several con-

trollers we begin smelling duplication:

• Try to save the model.

• If the save succeeds, populate the flash and redirect.

• If the save fails, populate the flash and fall through to the default

render.

Duplication in tests is just as bad (if not worse) as duplication in pro-

duction code. So let’s clean this up with some meta-programming that

builds failure tests on the fly:

Download MockingCornerCases/test/test_helper.rb

def self.test_create_invalid_fails(options={})

if options[:model]

model = options[:model]

else name.demodulize.to_s =~ /^(.*)ControllerTest$/

model = $1.singularize.constantize rescue nil

end

define_method("test_create_invalid_fails") do

flexmock(model).new_instances.should_receive(:save).

once.and_return(false)

post :create

assert_not_nil assigns(model.to_s.underscore)

assert_response :success

assert_template 'new'

assert_not_nil flash[:error]

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MockingCornerCases/test/test_helper.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=190

40. REDUCING DEPENDENCIES WITH MOCKS 191

If a model class name is passed in via options then we use it. Otherwise,

we try to glean the model class name from the functional test name.

Then we dynamically create a test method that does exactly what we

did before, but in a generic way. So now in our functional test, we can

just write:

Download MockingCornerCases/test/functional/gadgets_controller_test.rb

test_create_invalid_fails

And we could do the same thing with the happy path, replacing our

original successful creation test with a one-liner.

Discussion

This kind of automation can be quite useful for testing a large system

with many controllers that do similar things. RESTful controllers, in

general, are ideal candidates for meta-programming.

Also See

• This is the mere tippy-top of the FlexMock iceberg. It has an exten-

sive (and yet extremely usable) mocking API, so be sure to check

out the excellent documentation for all your mocking needs.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/MockingCornerCases/test/functional/gadgets_controller_test.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=191

Recipe 41

Fixtures Without Frustration

Problem

Text fixtures have become a millstone around your neck, dragging you

down every time you try to be a good little tester. You spend hours

getting all the fixture records knitted together with ids, only to have it

all come crumbling down with the slightest change to test data. If only

you didn’t have to remember all those numbers, life would be a little

sweeter (and you’d actually get some tests written).

Solution

Let’s start with a little recap of just how quickly text fixtures can go bad.

Suppose we have a has_and_belongs_to_many relationship between users

and tags. To populate the tags_users join table of our test database, we

painstakingly created the following tags_users.yml fixture file:

fred_caveman:

user_id: 1

tag_id: 1

fred_programmer:

user_id: 1

tag_id: 3

barney_caveman:

user_id: 2

tag_id: 1

barney_juggler:

user_id: 2

tag_id: 2

Tying these relationships together with primary keys really hurts, and

it leads to brittle fixture files. Oh, and it makes the fixture files hard to

decipher, too: What exactly are Barney’s tags? It’s pretty much all bad

news. So let’s clean this mess up using the new (foxy) fixtures in Rails

2.0.

First, we delete the tags_users.yml fixture file altogether. We don’t need it

because we already have a tags.yml file, and each tag record has a label:

Download events/test/fixtures/tags.yml

programmer:

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/fixtures/tags.yml

41. FIXTURES WITHOUT FRUSTRATION 193

name: Programmer

juggler:

name: Juggler

caveman:

name: Caveman

Then we update the users.yml fixture file and tag each user using the

labels from our tags.yml file:

Download events/test/fixtures/users.yml

fred:

name: Fred Flintstone

email: fred@flintstones.com

tags: caveman, programmer

barney:

name: Barney Rubble

email: barney@rubbles.com

tags: caveman, juggler

Now that’s more like it! Rather than using ids, we can just use the tags

association because the fixture knows that our User model declares a

has_and_belongs_to_many association to our Tag model.

In fact, we don’t need to type any ids into our fixture files—they’re gen-

erated for us by hashing the fixture record label. All we need to remem-

ber is the label. And if we really need the id for a label, for example

when patching up old fixtures, we can turn it inside out using ERB in

our fixture file:

tag_id: <%= Fixtures.identify(:caveman) %>

Or we can track down ids from Rake:

$ rake db:fixtures:identify LABEL=caveman

We can also use fixture labels to clean up another association in our

app: an event has_many users through registrations, and vice versa. That

is, we have a join model called Registration that points to both an Event

and a User. In this case, because a Registration isn’t a pure join table,

we need a registrations.yml fixture file for the registrations table. In the old

days the fixture file would be littered with foreign_keys, like this:

fred_for_rails:

event_id: 1

user_id: 1

price: 10.00

paid_at: <%= 1.day.ago.to_s(:db) %>

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/fixtures/users.yml
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=193

41. FIXTURES WITHOUT FRUSTRATION 194

barney_for_ruby:

event_id: 2

user_id: 2

price: 20.00

paid_at:

But now things become a lot more readable:

Download events/test/fixtures/registrations.yml

DEFAULTS: &DEFAULTS

price: 10.00

paid_at: <%= 1.day.ago.to_s(:db) %>

fred_for_rails:

user: fred

event: rails_studio

<<: *DEFAULTS

barney_for_ruby:

user: barney

event: ruby_studio

<<: *DEFAULTS

Again, the fixture knows about the belong_to associations in our Regis-

tration model, so we can replace event_id with event, for example. While

we’re at it, refactoring all the duplicated fixture keys into a set of defaults

that each record references makes the fixture even easier to maintain.

Any fixture labeled DEFAULTS is ignored, and YAML takes care of the rest.

Things don’t get out of sync...

Discussion

Yes, foxy fixtures also support polymorphic associations. For example,

suppose we have an Address model that can belong to an Event, a User,

or any other model that’s addressable, like so:

class Addressable

belongs_to :addressable, :polymorphic => true

end

Instead of using the id and the type in the fixture file, we can just use

the polymorphic target label and type:

rails_in_denver:

address: 10345 Park Meadows Drive

city: Denver

state: CO

addressable: rails_studio (Event)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/test/fixtures/registrations.yml
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=194

41. FIXTURES WITHOUT FRUSTRATION 195

fred_in_denver:

address: 123 Main Street

city: Denver

state: CO

addressable: fred (User)

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=195

Recipe 42

Tracking Test Coverage with

RCov

Problem

Writing tests is all well and good, but how do you know when your

application is sufficiently tested? And if you’re learning to write auto-

mated tests, where do you dig in? Well, if your bug tracking system is

empty and your phone isn’t ringing at 2am, that’s a good start. But

when the phone does start ringing, it’s usually too late. You’d like to

get some insight into how well your code is tested before it’s rolled into

production.

Ingredients

• The rcov gem:

$ gem install rcov

• The rails_rcov plugin (optional):

$ script/plugin install http://svn.codahale.com/rails_rcov

Prepared exclusively for Jeanne McDade

42. TRACKING TEST COVERAGE WITH RCOV 197

Solution

There are many different metrics for tracking the efficiency of our tests.

One of the easiest metrics to collect is code coverage. Simply put, it tells

us which parts of our code get exercised by our tests.

Test coverage is a no-brainer to measure because rcov automates the

entire process. We just run our tests—or put them on an automated

run cycle—and rcov tallies up statistics. We’ll get to the how in a jiffy.

First a peek at the HTML output:

This is telling. Our RegistrationsController only has around 77% test cov-

erage and it plays a central role in our business. That’s unfortunate. To

see which lines are untested, we just click on the file name:

Whoops! We tested the blue-sky scenario, but forgot about the edge

case. It’s embarrassing, but it’s exactly the kind of quick feedback we

need to guide our testing efforts. Plus it just feels good to write a new

test that pushes the coverage bar to 100%.

That’s a taste of the treat; now for the ingredients. All we need is a Rake

task that calls the rcov command-line utility and remembers all of our

options. We’ll stick that in the lib/tasks/rcov.rake file,51 for example:

51. Thanks to Chris Noble for working out the Windows-specific bits.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=197

42. TRACKING TEST COVERAGE WITH RCOV 198

Download events/lib/tasks/rcov.rake

namespace :test do

desc 'Tracks test coverage with rcov'

task :coverage do

unless PLATFORM['i386-mswin32']

rm_f "coverage"

rm_f "coverage.data"

rcov = "rcov --sort coverage --rails --aggregate coverage.data " +

"--text-summary -Ilib -T -x gems/*,rcov*"

system("#{rcov} --no-html test/unit/*_test.rb")

system("#{rcov} --no-html test/functional/*_test.rb")

system("#{rcov} --html test/integration/*_test.rb")

system("open coverage/index.html") if PLATFORM['darwin']

else

rm_f "coverage"

rm_f "coverage.data"

rcov = "rcov.cmd --sort coverage --rails --aggregate coverage.data " +

"--text-summary -Ilib -T"

system("#{rcov} --no-html test/unit/*_test.rb")

system("#{rcov} --no-html test/functional/*_test.rb")

system("#{rcov} --html test/integration/*_test.rb")

system("\"C:/Program Files/Mozilla Firefox/firefox.exe\" " +

"coverage/index.html")

end

end

end

Then it’s just one command to run all our tests, generate the aggregated

HTML report, and pop it open in our default browser:

$ rake test:coverage

We also get a text summary for the unit, functional, and integration

tests as they’re being run. Either way, the reports can be quickly scanned

for warning signs.

Discussion

We have to say this, otherwise the testing gurus come out of the wood-

work: Code coverage is an inexpensive metric to collect, but it should

not be the only yardstick by which we evaluate our tests. All rcov does

is check whether a line of code was executed, not that it’s the correct

code. Having gotten that out of the way, using rcov is a lot better than

throwing arbitrary tests at your application and hoping it’s time well

spent.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/lib/tasks/rcov.rake
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=198

42. TRACKING TEST COVERAGE WITH RCOV 199

So is it 100% code coverage or bust? Well, that’s a worthy goal but

sometimes not practical. In some cases rcov can’t accurately measure

one-liners, for example. Chad Fowler’s rule is: “Everything green except

when rcov is too dumb to understand that my code is covered”. RCov

should only be used as a directional indicator. It’s a really good one but

taking it too literally is a mistake.

Also See

If you’re the sort who doesn’t mind adding yet another plugin, the

rcov_rails plugin gives you Rake task out of the box. For every test:xxx task

in your Rails application, the rails_rcov plugin adds two more: test:xxx:rcov

and test:xxx:clobber_rcov. For example, to track the coverage of our unit

tests, and then remove the unit test coverage reports, use:

$ rake test:units:rcov

$ rake test:units:clobber_rcov

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=199

Recipe 43

Testing HTML Validity

By Peter Marklund (http://marklunds.com)

Peter has extensive experience with and expertise in object orientation, web develop-

ment, relational databases, and testing, and has been doing web development with Java

and Tcl since 2000. In late 2004 he was introduced to Ruby on Rails and has since helped

develop an online community, and a CRM system with Rails. Peter is currently working as a

Ruby on Rails developer and teacher in Stockholm and is helping organize events for the

local Rails community.

Problem

You want to make sure your site renders consistently (and correctly)

across all modern browsers. A good start is to validate your markup

so that it complies with the W3C standards, doesn’t have loop holes in

HTML escaping, and doesn’t contain broken links, form POSTs, or redi-

rects. But how do you automatically validate all that in an application

that dynamically generates HTML?

Ingredients

• The Html Test plugin:

$ script/plugin install http://htmltest.googlecode.com/svn/trunk/html_test

• The RailsTidy plugin52 is optional, but a useful complement to the

W3C validator since it generates warnings about empty tags, for

example. RailsTidy depends on the HTML Tidy library as well as

its Ruby API.

Solution

The Http Test plugin gives us a handful of assertion methods that we

can use in functional and integration tests. Here, let’s ask the W3C if

our index template passes muster:

def test_index

get :index

assert_response :success

assert_template 'index'

assert_validates

52. http://www.cosinux.org/~dam/projects/rails-tidy/doc/

Prepared exclusively for Jeanne McDade

http://marklunds.com
http://www.cosinux.org/~dam/projects/rails-tidy/doc/

43. TESTING HTML VALIDITY 201

The assert_validates method simply calls two underlying assertions: assert_w3c

and assert_tidy. (You’ll just call assert_w3c if you aren’t using Tidy.) The

last generated W3C error report is written to /tmp/w3c_last_response.html

for debugging fun.

Those assertions are run after the request is processed, and they’re

useful if we’re only looking to validate a subset of our pages. If instead

we want to validate our entire site, we can add this to our test_helper.rb

file:

ApplicationController.validate_all = true

ApplicationController.validators = [:tidy, :w3c]

To make sure that URLs in links, forms, and redirects resolve, we need

to add the following to test_helper.rb for all tests or to a specific con-

troller/integration test:

ApplicationController.check_urls = true

ApplicationController.check_redirects = true

That’s pretty handy, but it comes at a price. By default the Html Test

plugin uses the online W3C validator.53 This can significantly slow our

tests down (plus we like to run tests while on airplanes). A better solu-

tion is to install the W3C validator locally.54 Then we just point the

assertions to our local install by adding this to our test_helper.rb file, for

example:

Html::Test::Validator.w3c_url = "http://localhost/cgi-bin/check"

Now let’s say we want to restrict HTML validation to a subset of our con-

trollers or actions. For example, suppose we don’t want to run it on the

admin side of our application. To do that, we override the should_validate?

method to turn off validation under /admin:

module Html

module Test

class ValidateFilter

def should_validate?

response.headers['Status'] =~ /200/ &&

params[:controller] !~ /^admin/

end

end

end

end

53. http://validator.w3.org

54. See http://validator.w3.org/docs/install.html for installation instructions for your operating

system.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

/admin
http://validator.w3.org
http://validator.w3.org/docs/install.html
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=201

43. TESTING HTML VALIDITY 202

In a similar fashion, we can override the skip_url? method to skip check-

ing whether a URL in a link, form, or redirect resolves. Here’s the

default implementation of that method:

module Html

module Test

module UrlSelector

def skip_url?(url)

return true if url.blank? or (!external_http?(url) and url =~ /:\/\//)

Unsupported protocols

[/^javascript:/, /^mailto:/, /^\#$/].each do |pattern|

return true if url =~ pattern

end

false

end

end

end

end

Finally, here’s a trick for finding unquoted data in your templates: Add

characters such as "&" and "<" to your fixture data. That way, HTML

validation will fail if unquoted fixture data is included in a template.

This of course assumes that the template is covered by a controller or

integration test.

Discussion

Tidy can sometimes be a bit too picky. If it barks about things you don’t

care about, you can tell Tidy to ignore them:

Html::Test::Validator.tidy_ignore_list =

[/<table> lacks "summary" attribute/]

Also See

There are a couple of alternative Rails plugins that you might want to

look into for your validation needs.

• Assert Valid Markup55 caches the results and only hits the valida-

tor when the generated HTML response changes.

• The RaiLint plugin56 can validate all HTML, CSS, and JavaScript

assuming you have Java, the JavaScript Lint validator, and a few

other things installed locally.

55. http://redgreenblu.com/svn/projects/assert_valid_markup/README

56. http://rubyforge.org/projects/railint/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://redgreenblu.com/svn/projects/assert_valid_markup/README
http://rubyforge.org/projects/railint/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=202

43. TESTING HTML VALIDITY 203

If you have problems installing the W3C validator locally you can use

the xmllint command line validator instead. The xmllint validator is part

of the libxml2 library that you can download from http://xmlsoft.org. The

W3C validator is favored over xmllint because it’s more authoritative,

and it also produces much nicer and easier to debug error reports with

references to line numbers in your document.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://xmlsoft.org
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=203

Part X

Performance and Scalability

Recipes

204
Prepared exclusively for Jeanne McDade

Recipe 44

Looking Up Constant Data

Problem

Your application has constants stored in the database: states, coun-

tries, planets, etc. You want to list the constants in a form selection, for

example, but you don’t want to fetch the constants from the database

every time the form is displayed.

Solution

Let’s take the example where a person needs to select their home state

as part of their profile. We have an empty Person model and a bare-bones

migration file that looks like this:

Download buffet/db/migrate/001_create_people.rb

class CreatePeople < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.string :name

t.string :email

t.string :state

end

end

def self.down

drop_table :people

end

end

On the profile form we want to show full state names in the selection,

but when a person saves their profile we want the people.state column

to contain the state’s abbreviation. So we need a migration file to create

the states table where we’ll store the state names and abbreviations.

When the migration is applied, we’ll go ahead and populate the table

with all 50 states.

Download buffet/db/migrate/002_create_states.rb

class CreateStates < ActiveRecord::Migration

def self.up

create_table :states do |t|

t.string :name

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/db/migrate/001_create_people.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/db/migrate/002_create_states.rb

44. LOOKING UP CONSTANT DATA 206

t.string :abbreviation

end

State.create([

{:name => 'Alaska', :abbreviation => 'AK'},

{:name => 'Alabama', :abbreviation => 'AL'},

{:name => 'Arkansas', :abbreviation => 'AR'},

{:name => 'Arizona', :abbreviation => 'AZ'},

... more states ...

{:name => 'Wyoming', :abbreviation => 'WY'}

])

end

def self.down

drop_table :states

end

end

Once we have those constants tucked away in the database, we need

to read them into our application’s memory... exactly once! It turns

out Ruby makes that easy to do. When you define a class in Ruby, it’s

executable code. That means you can have arbitrary code run while

a class is being defined. And in production mode Rails doesn’t reload

classes, so they’ll be defined one time.

We just need a class to trigger all this, and it seems reasonable to have

a State model class for our states table. While the State class is being

defined, we can call any method on the State class object. If that hurts

your brain, don’t worry. In this case it means that we can call find to

read in all the state data. Here’s what that looks like:

Download buffet/app/models/state.rb

class State < ActiveRecord::Base

NAMES_ABBREVIATIONS = self.find(:all, :order => 'name').map do |s|

[s.name, s.abbreviation]

end

end

Remember that we want to display the state names, but store a state

abbreviation in the person’s record. In other words, we don’t need to

carry around all the attributes of each State model object. Instead, we

use the map method to turn each model into an array containing just

the name and abbreviation. Let’s use script/console to see how the con-

stant data get packaged:

$ ruby script/console

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/app/models/state.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=206

44. LOOKING UP CONSTANT DATA 207

>> State::NAMES_ABBREVIATIONS

=> [["Alabama", "AL"], ["Alaska", "AK"], ["Arizona", "AZ"],

["Arkansas", "AR"], ... ["Wyoming", "WY"]]

It’s just an array of arrays. Now we have a really simple, but effective,

“compile-time” cache. From anywhere in our application we can refer-

ence State::NAMES_ABBREVIATIONS and get all the state names and abbre-

viations without hitting the database. Which brings us to the form:

Download buffet/app/views/people/_form.rhtml

<% form_for(@person) do |f| -%>

<p>

Name:

<%= f.text_field :name %>

</p>

<p>

Email:

<%= f.text_field :email %>

</p>

<p>

State:

<%= f.select(:state, State::NAMES_ABBREVIATIONS) %>

</p>

<p>

<%= f.submit 'Save' %>

</p>

<% end -%>

The select form helper will happily use the array of arrays contained

in our State::NAMES_ABBREVIATIONS. (Don’t you love it when a plan comes

together?) The first element of each array (the state name) is used as the

text displayed for the option and the second element (the state abbre-

viation) is used as the value that gets sent to the server when the form

is submitted. Here’s the HTML that gets generated:

<select id="person_state" name="person[state]">

<option value="AL">Alabama</option>

<option value="AK">Alaska</option>

<option value="AZ">Arizona</option>

<option value="AR">Arkansas</option>

. . .

<option value="WY">Wyoming</option>

</select>

That’s all there is to it! Works a treat for constant (read-only) data that

you want to look up once.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/app/views/people/_form.rhtml
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=207

44. LOOKING UP CONSTANT DATA 208

Discussion

Bear in mind that you won’t see the benefits of caching unless you’re

running the application in production mode. In development mode your

application’s code is reloaded on every request. To test out the caching

in development, you need to make the following change (and remember

to reset!) in your config/environments/development.rb file:

config.cache_classes = true

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=208

Recipe 45

Serving Page Caches to

Facebook

By Ezra Zygmuntowicz (http://brainspl.at)

Ezra Zygmuntowicz is a co-founder of EngineYard.com, a scalable Rails hosting service.

He is the author of the book Rails Deployment by the Pragmatic Programmers and has

contributed many open source Ruby and Rails related projects such as BackgrounDrb, ez-

where, and Merb. He is a speaker at The Rails Edge, the 2006 and 2007 RailsConf, and the

2007 SDForum Ruby conference. He has been working with Ruby for almost 4 years and

picked up Rails in the summer of 2004. In his spare time he likes to hack Ruby and Erlang

and tinker with his vintage 54 VW beetle.

Problem

You have a Facebook app and you’re using Rails’ built-in page caching

to serve the page contents directly from disk. Unfortunately, Facebook

only sends POST requests and nginx (and most other web servers) don’t

allow serving a static file in response to a POST request. Nginx, for

example, returns a 405 error.

Ingredients

• The nginx web server

Solution

To solve this we need to handle the 405 error and serve up the page-

cached file while at the same time handling all the normal requests.

Here’s the snippet we need to add at the bottom of our vhost server

block in our nginx configuration file:

error_page 405 =200 @405;

location @405 {

index index.html index.htm;

needed to forward user's IP address to rails

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

proxy_redirect false;

proxy_max_temp_file_size 0;

proxy_next_upstream error;

if (-f $request_filename) {

break;

Prepared exclusively for Jeanne McDade

http://brainspl.at

45. SERVING PAGE CACHES TO FACEBOOK 210

}

if (-f $request_filename.html) {

rewrite (.*) $1.html break;

}

if (!-f $request_filename) {

proxy_pass http://mongrel;

break;

}

}

So first we catch the 405 error with an error_page directive and change

it to a 200 response code. Then after setting some proxy directives, we

check to see if there’s a page-cached file that matches the request. If

so, we serve it straight from disk and Facebook is happy.

So far, so good. If there’s no cached page file, then we do the standard

stuff. First we handle requests for static ..html files and fall back to our

Rails app via Mongrel if it’s a dynamic request.

Tricks like this seem obvious once you get them working and step back,

but this one in particular took forever to figure out. Here’s saving you

the trouble.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=210

Recipe 46

Profiling In The Browser

By Aaron Batalion (http://blog.batalion.com)

Aaron Batalion likes long walks in the park and developing web applications. He is an

early adopter who picked up Ruby On Rails in 2005 while working at Blockbuster, where he

led the architectural effort to build an online subscription portal, from online experience

through fulfillment. Later, as an architect for Revolution Health, he led the organizational

shift from Java and other technologies to a Rails platform and has enjoyed stretching Rails

to its enterprise limits ever since. He has authored and co-authored many plugins, many of

which are available on RubyForge.

Problem

As more and more users flock to your application, performance becomes

increasingly important. You may have tried profiling certain pages by

writing integration tests that are wrapped in timing code. But your Rails

app behaves differently when its nestled in its production environment.

So you really need to profile your application in production to answer

questions such as these:

• Is that Amazon API call that you mocked out locally taking 80% of

the request time in production?

• Do you have an ActiveRecord finder that was speedy with a small

dataset, but needs some love with bigger datasets?

• Is your caching solution paying off as expected?

Ingredients

• The ruby-prof profiler gem:

$ gem install ruby-prof

Solution

It turns out we can arrange things so that we get profiling information

for any web request right in our browser!

First we need a good profiler library, and RubyProf57 doesn’t disappoint.

It can generate thread/method level reports that outline hotspots in our

application.

57. http://ruby-prof.rubyforge.org

Prepared exclusively for Jeanne McDade

http://blog.batalion.com
http://ruby-prof.rubyforge.org

46. PROFILING IN THE BROWSER 212

The trick though, is getting RubyProf to profile a controller action and

then append the profile report to the action’s response. So we need a

convenient way to wrap an action with some profiling code. As if by

design, an around_filter does just that:

around_filter do |controller, action|

logger.debug "before #{controller.action_name}"

action.call

logger.debug "after #{controller.action_name}"

end

Mix these two ingredients together in our ApplicationController and we

have ourselves an in-browser profiler for any request:

Download BrowserProfiling/app/controllers/application.rb

class ApplicationController < ActionController::Base

around_filter do |controller, action|

if controller.params.key?("browser_profile!")

require 'ruby-prof'

Profile only the action

profile_results = RubyProf.profile { action.call }

Use RubyProf's built in HTML printer to format the results

printer = RubyProf::GraphHtmlPrinter.new(profile_results)

Append the results to the HTML response

controller.response.body << printer.print("", 0)

else

action.call

end

end

If any incoming request has a browser_profile! parameter, we still call the

requested action but under the watchful eye of RubyProf. Then we tack

the profile report on to the end of the response. For example, if we type

in the following URL we see the inline report:

http://my-production-host.com/recipes?browser_profile!

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/BrowserProfiling/app/controllers/application.rb
http://my-production-host.com/recipes?browser_profile!
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=212

46. PROFILING IN THE BROWSER 213

There’s just one small problem. Our around_filter is not guaranteed to

be the first and last filter in the filter chain. That means some other

before_filter or after_filter could be to blame for our performance problems,

and we’d never know it. That is, until we rearrange our code slightly.

Instead of using an around_filter to wrap the action, we could wrap the

entire request process. It involves basically the same code, this time

added to ActionController::Base:

Download BrowserProfiling/lib/rails_extensions.rb

module ActionController

class Base

def process_with_browser_profiling(request, response,

method = :perform_action,

*arguments)

if request.parameters.key?('browser_profile!')

require 'ruby-prof'

Profile only the action

profile_results = RubyProf.profile {

response = process_without_browser_profiling(request, response,

method, *arguments)

}

Use RubyProf's built in HTML printer to format the results

printer = RubyProf::GraphHtmlPrinter.new(profile_results)

Append the results to the HTML response

response.body << printer.print("", 0)

Reset the content length (for Rails 2.0)

response.send("set_content_length!")

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/BrowserProfiling/lib/rails_extensions.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=213

46. PROFILING IN THE BROWSER 214

response

else

process_without_browser_profiling(request, response,

method, *arguments)

end

end

alias_method_chain :process, :browser_profiling

end

end

The key to making this work is the alias_method_chain method. When

a request comes into our app, the process method is invoked to handle

it. But we want to do that with profiling enabled. So alias_method_chain

says that whenever the profile method is called, our profile_with_browser_profiling

method should be called instead. Then, to invoke the original process

method in our profiling block (or if the request shouldn’t be profiled),

we call process_without_browser_profiling.

Also See

While this recipe works for most scenarios, it doesn’t support POST

operations or redirects. To do that, we’d need to append the profiling

results to a file instead of the HTML response. For a more full-featured

profiler based on this recipe, check out the BrowserProfiler plugin58:

$ script/plugin install svn://rubyforge.org/var/svn/browser-prof

Also if you dig having inline reports, you might like the BrowserLog-

ger plugin59 which appends the current request’s log to the end of a

response. You’ll never tail a log file again!

58. http://rubyforge.org/projects/browser-prof/

59. http://rubyforge.org/projects/browser-logger/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://rubyforge.org/projects/browser-prof/
http://rubyforge.org/projects/browser-logger/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=214

Recipe 47

Caching Up With the Big Guys

By PJ Hyett and Chris Wanstrath (http://errtheblog.com)

By day, PJ Hyett and Chris Wanstrath run the Rails consulting and training firm, Err Free. By

night, they maintain Err the Blog, a running commentary on both Ruby and Rails.

Problem

You’ve received massive funding. You’ve hit the front page of DiggCrunch.

New users are flowing like champagne at your launch party. But despite

using standard Rails template caching, your app is slowing, slowing,

slowing down.

All that beautifully concise Active Record code spread throughout your

app is now becoming a serious bottleneck as your tables (and band-

width bills) start growing by the millions. Wouldn’t it be great to change

that clever code slightly into something simple and watch (most of) your

problems disappear?

Ingredients

• The memcached daemon.60 On a Mac we install it like this:

$ sudo port install memcached

There is also a port of memcached for the win32 architecture.61

• The memcache-client library:

$ gem install memcache-client

• The cache_fu plugin:

$ script/plugin install svn://errtheblog.com/svn/plugins/cache_fu

60. http://www.danga.com/memcached

61. http://jehiah.cz/projects/memcached-win32/

Prepared exclusively for Jeanne McDade

http://errtheblog.com
http://www.danga.com/memcached
http://jehiah.cz/projects/memcached-win32/

47. CACHING UP WITH THE BIG GUYS 216

Solution

At some point, even the cleanest, most-efficient code can’t handle mas-

sive loads—not because it’s slow, but commonly because a resource

it depends on is slow. For web apps, it’s usually the database. That’s

where the gentle developers of LiveJournal come in. They wrote an awe-

some library by the name memcached of which they’ve this to say:62

“memcached is a high-performance, distributed memory object caching

system, generic in nature, but intended for use in speeding up dynamic

web applications by alleviating database load.”

Sounds great, right? It may not cook your chicken rotisserie style in

10 minutes, but it has saved sites like Gamespot, Facebook, Wikipedia,

and Digg from an early demise. And developers in the Rails community

are working towards making memcached one of the easiest ways to

scale your app. So let’s get right to it, shall we?

First we start up the memcached daemon process:

$ rake memcached:start

Conceptually, memcached is just a distributed hash: it caches objects

indexed by a key. The Rake task fires it up on a server and port combo

specified in the config/memcached.yml file. Here’s the default develop-

ment configuration that was created when the cache_fu plugin was

installed:

development:

servers: localhost:11211

Cool, now let’s get to the goods with something simple. Say we have an

action that fetches a user along with all of their groovy tags:

class UsersController < ApplicationController

def show

@user = User.find(params[:id], :include => :tags)

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @user }

end

end

end

62. http://www.danga.com/memcached

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://www.danga.com/memcached
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=216

47. CACHING UP WITH THE BIG GUYS 217

It’s very clean, but it’s slowing down as our database and traffic grows.

So let’s cache each user in the memcached daemon’s memory. To do

that, we just add acts_as_cached to our User model:

class User < ActiveRecord::Base

acts_as_cached :include => :tags

end

Then we replace the find method in the controller action with get_cache:

class UsersController < ApplicationController

def show

@user = User.get_cache(params[:id])

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @user }

end

end

end

That’s all there is to it, mostly. Pretty simple object caching. The get_cache

method will try to fetch data uniquely identified by the User model and

value of params[:id] from the cache. If nothing is found (a cache miss), it

will call User.find with the params[:id] value and cache the result. In other

words, the first time the show action is hit a DB query is run. Here, let’s

have a look in the log:

User Load Including Associations (0.189375) SELECT `users`.`id`...

==> Set User:694624473 to cache. (0.01550)

Completed in 4.63984 (0 reqs/sec) | Rendering: 0.00114 (0%) |

Memcache: 0.01745 | DB: 0.19800 (4%) | 200 OK

If something is found, it will just return it. That means when we hit the

action a second time, there’s no DB query:

==> Got User:694624473 from cache. (0.00983)

Rendering users/show

Completed in 0.02702 (37 reqs/sec) | Rendering: 0.00334 (12%) |

Memcache: 0.00983 | DB: 0.00281 (10%) | 200 OK

That’s a good start! However, as our controllers become more skinny

and our models fatter, we’re going to end up with lots of custom finders.

Say we have a page displaying the last 50 users that have signed up,

and we want to show them along with their cute profile picture, and

maybe their tags. Not a big deal, but this query involves three quite

large tables. Here’s our custom finder:

class User < ActiveRecord::Base

def self.find_latest

find :all, :order => 'users.id desc',

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=217

47. CACHING UP WITH THE BIG GUYS 218

:limit => 50,

:include => [:picture, :tags]

end

end

And here’s our index action that uses it:

class UsersController < ApplicationController

def index

@users = User.find_latest

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @users }

end

end

end

Skinny controller, fat model? Check! Ordering by id? Check! Loading

pictures and tags in bulk? Check! Query takes two seconds to execute?

Check! Wait, that last check’s no good.

So instead of running that two-second query on every page load, let’s

just run it once every five minutes and cache the result. To do that,

we just change the acts_as_cached slightly in our User model. Here’s our

revised model in its entirety:

Download CachingUp/app/models/user.rb

class User < ActiveRecord::Base

has_one :picture

has_and_belongs_to_many :tags

acts_as_cached :ttl => 5.minutes

def self.find_latest

find :all, :order => 'users.id desc',

:limit => 50,

:include => [:tags, :picture]

end

end

The custom finder method in the model wasn’t changed? That’s right!

The cache_fu plugin offers a number of really sweet features, and one of

our favorites is being able to pass a method name to the cached method

and have the result cached. For example, now over in our controller we

can use User.cached(:find_latest):

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/CachingUp/app/models/user.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=218

47. CACHING UP WITH THE BIG GUYS 219

Download CachingUp/app/controllers/users_controller.rb

class UsersController < ApplicationController

def index

@users = User.cached(:find_latest)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @users }

end

end

end

Calling cached(:find_latest) caches the result of the finder and puts it in

the cache using the method name as the key.

This is the crux of caching. Databases are always the bottleneck in web

applications, so you avoid that stress by putting as much of your data

in memory as makes sense. The idea is that the data is retrieved from

the database once, put into the cache, and returned from the cache on

any subsequent requests until it has been invalidated.

Speaking of invalidation, how do we ensure our cache is fresh beyond

setting an appropriate timeout? The way we have our User model set

up now, the cache is expired every five minutes. Rails, conveniently,

provides hooks into a model object’s lifecycle, letting us automate the

cache expiry process:

class User < ActiveRecord::Base

acts_as_cached

after_save :expire_cache

end

Now when a User object is updated, her record will be expired from the

cache. When the next request comes in for that user, Rails will grab

a fresh copy from the database and put the object right back in the

cache where it belongs. This means we have strong cache integrity—

we’ll rarely get stale data.

However, if we think we have stale data and want to see our page gen-

erated straight from the database, we can write a before_filter to force a

cache reset:

Download CachingUp/app/controllers/application.rb

class ApplicationController < ActionController::Base

before_filter :set_cache_override

private

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/CachingUp/app/controllers/users_controller.rb
http://media.pragprog.com/titles/fr_arr/code/CachingUp/app/controllers/application.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=219

47. CACHING UP WITH THE BIG GUYS 220

def set_cache_override

returning true do

ActsAsCached.skip_cache_gets =

!!params[:skip_cache]

end

end

end

Setting skip_cache_gets tells cache_fu to treat every cache lookup as a

cache miss. We can trigger it by hitting:

http://localhost:3000/users?skip_cache=1

But be very careful with this! If you do this on the front door of a big

site during peak hours, all those expensive queries get re-run. A safer

alternative is to call User.reset_cache, which grabs data and sets it in the

cache without expiring the key. While this is going on, every request

gets the old cached data.

Hey, this site is getting faster! But there’s one more wrinkle. Let’s say

we also have a page that lists all the recent forum posts, and next to

each post we show the user name and their picture. Some users appear

more than once. So we need to load all the users who have posts on this

page, but we don’t want to cache users along with their forum posts.

Otherwise every time a user changed her picture, we’d have to clear the

cache of every post she made. Instead, we can pass a list of user ids

into the get_cache method, like so:

user_ids = @posts.map(&:user_id).uniq

@users = User.get_cache(user_ids)

This grabs all the matching keys in parallel, filling in the cache misses

as it goes. When all is said and done, @users is a hash keyed by the user

id and the value is the corresponding User model. Then we can iterate

through the hash data in our view to keep things speedy.

Finally, it’s time to put all this caching goodness into production. First

we need to check the configuration of the production section of the con-

fig/memcached.yml file:

production:

namespace: killer_app

servers:

- 192.185.254.121:11211

- 192.185.254.138:11211

- 192.185.254.160:11211

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://localhost:3000/users?skip_cache=1
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=220

47. CACHING UP WITH THE BIG GUYS 221

The namespace is important because it’s the namespace all the keys

live under, and setting it for our app lets us have different apps sharing

the same memcached. It’s also important to use IP addresses for where

the memcached daemons live to avoid DNS requests.

Then once we have the production environment configured, we just fire

up the memcached daemon on the production machines:

$ rake memcached:start

There’s also a memcached_ctl script that comes with cache_fu for man-

aging the daemon on multiple servers.

Using memcached isn’t a silver bullet—there are a number of hardware

and architectural considerations to keep in mind as your app grows.

For example, if you can’t keep up with the IO requests, then you won’t

benefit from memcached. And in smaller apps it may actually make

things slower. Focus on your app first, then add cache_fu in later when

you have evidence that you really need it.

Discussion

You can cache anything: generated images, intense number crunching,

HTML, etc.

Also See

Using memcached adds at least one more moving part to your pro-

duction environment. As reliable as memcached may be, it’s wise to

monitor the daemons across multiple servers using Monit. See Recipe

67, Monitoring (and Repairing) Processes with Monit, on page 285 for an

example.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=221

Recipe 48

Dynamically Updating

Cached Pages

By Mike Subelsky (http://www.subelsky.com/)

Mike Subelsky is a former Navy cryptologic officer and cybersecurity analyst now work-

ing as a freelance software developer and Rails hacker. He lives and hacks in Baltimore,

Maryland.

Problem

You want to use page caching but still dynamically customize a few page

elements for each user. For example, in the header of every cached page

you want to show a “Login” link to users who haven’t already logged in,

and show the user’s name and a “Logout” link if they are logged in.

Solution

Suppose at the top of every page in our application we make the logged

in user feel warm and fuzzy, like this:

The dynamic part is contained within a login span in our application

layout file:

Download DynamicCacheContent/app/views/layouts/application.html.erb

<% if logged_in? -%>

Welcome, <%= h user_name %>!

(<%= link_to 'Log Out', logout_path %>)

<% else -%>

<%= link_to 'Log In', login_path %>

<% end -%>

Now let’s say the front page of our app gets a lot of action, so we

enable page caching. The next request for the front page will cache it

and subsequent requests will bypass Rails completely—the web server

Prepared exclusively for Jeanne McDade

http://www.subelsky.com/
http://media.pragprog.com/titles/fr_arr/code/DynamicCacheContent/app/views/layouts/application.html.erb

48. DYNAMICALLY UPDATING CACHED PAGES 223

merely serves the static page from our public directory. That adds up to

lightning-fast page loads.

The only downside is that the static page is, well, static. So if Wally is

already logged in and he’s the first person to hit our front page, then

everyone sees Wally’s greeting. Worse yet, it appears as though everyone

is logged in as Wally. That is unless we add a wee bit of JavaScript into

the page. Then we can have our cake and eat it too!

As it stands, when a user logs in we put their user id in the session.

That’s how our application remembers that the user has already logged

in. But we need the cached page to remember, too. To do that, when

the user logs in we’ll also create a cookie that contains the user’s name.

So in the controller that handles our login/logout functions, we’ll have

methods that look like this:

def login

user = User.authenticate(params[:login], params[:password])

if user

reset_session

session[:user_id] = user.id

cookies[:user_name] = {:value => user.name}

redirect_to home_url

else

flash[:error] = "Sorry, try again."

render :action => 'new'

end

end

def logout

reset_session

cookies.delete :user_name

redirect_to home_url

end

Next we need some JavaScript that looks for a named cookie and dynam-

ically updates the personalized area. As we’re already using the Proto-

type library for other features, we’ll use it here for simplicity:

Download DynamicCacheContent/public/javascripts/application.js

var LoginCheck = Class.create({

initialize: function(cookie_name) {

var cookie_value = get_cookie(cookie_name);

if (!cookie_value) {

$('login').update("Log In");

} else {

$('login').update("Welcome, " + cookie_value.escapeHTML() + "!" +

" (Log Out)");

}

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/DynamicCacheContent/public/javascripts/application.js
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=223

48. DYNAMICALLY UPDATING CACHED PAGES 224

}

});

function get_cookie(name) {

var value = null;

document.cookie.split('; ').each(function(cookie) {

var name_value = cookie.split('=');

if (name_value[0] == name) {

value = name_value[1];

}

});

return value;

}

If the user_name cookie is found in the browser, then we update the login

element in our header to contain a “Log Out” link with the user’s name.

If no user_name cookie is found, we update the page to show the “Log

In” link instead.

Finally, we just call the JavaScript function at the bottom of our appli-

cation layout file, passing in the name of the cookie we’re looking for:

Download DynamicCacheContent/app/views/layouts/application.html.erb

<script type="text/javascript">

// <![CDATA[

new LoginCheck('user_name');

//]]>

</script>

Now when the cached page is written to disk, the page includes the

JavaScript which dynamically updates the links on the page.

To test this in development mode, remember to (temporarily) enable

caching in your config/environments/development.rb file:

config.action_controller.perform_caching = true

Discussion

You could also use Prototype AJAX calls back to your server to perform

more complex, dynamic page updates.

You’ll likely want to name your cookie something unique, rather than

just user_name.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/DynamicCacheContent/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=224

48. DYNAMICALLY UPDATING CACHED PAGES 225

Also See

• If you need to cache pages that contain flash messages, check out

the Cacheable Flash plugin.63

63. http://www.pivotalblabs.com/articles/2007/08/08/cacheable-flash

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://www.pivotalblabs.com/articles/2007/08/08/cacheable-flash
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=225

Part XI

Security Recipes

226
Prepared exclusively for Jeanne McDade

Recipe 49

Flipping On SSL

Problem

You need a declarative way of specifying that certain actions should

only be allowed to run under SSL. If they’re accessed without it, they

should be redirected.

Ingredients

• David Heinemeier Hansson’s ssl_requirement plugin:

$ script/plugin install ssl_requirement

Solution

The solution is easier than you might imagine, but involves two deft

steps: configuring our web server and marking up our controllers. Let’s

get the web server out of the way first, and save the dessert for last.

We’ve got our trusty web server listening on port 443, and along comes

an SSL request. If it’s a dynamic request, the web server pawns if off

to our Rails app. Rails, however, needs to know if the original request

came in via https. It’s the web server’s job to send along this piece of

information to our Rails app, and the HTTP way to do that is by setting

a header.

As it turns out, Rails is already waiting for an HTTP header called

X_FORWARDED_PROTO. So in our Apache httpd.conf file, we just set the

X_FORWARDED_PROTO header to https in the virtual host for port 443.

You’ll have more stuff in your file, but here are the relevant parts we

need to set:

<VirtualHost *:443>

SSLEngine on

RequestHeader set X_FORWARDED_PROTO "https"

</VirtualHost>

If you’re using the nginx web server, you’ll set the header slightly dif-

ferent:

server {

listen 443;

location / {

Prepared exclusively for Jeanne McDade

49. FLIPPING ON SSL 228

proxy_set_header X_FORWARDED_PROTO https;

}

}

OK, that’s part one. Our Rails app now knows when an SSL request

comes in, and we can check for it using the request.ssl? method. Part

two is to do something with that information. Specifically, we want to

be able to declare that certain actions must be run under SSL and have

Rails “flip” to https when appropriate. That’s where the plugin comes in.

We just need to include it in our ApplicationController:

Download buffet/app/controllers/application.rb

include SslRequirement

This adds two methods to all our controllers: ssl_required and ssl_allowed.

It also adds a before_filter that checks request.ssl?. If SSL is required for

an action, but request.ssl? is false, then we’ll get a redirect to the same

URL but with the https protocol. The reverse is also true—running an

action under SSL that doesn’t require it will redirect to the http protocol.

Now, we don’t want any of this to happen when we’re issuing requests

against our local development (or test) app. So while we’re in the Appli-

cationController file, let’s add this method to include the local machine

check and then run the default checks:

Download buffet/app/controllers/application.rb

def ssl_required?

return false if local_request? || RAILS_ENV == 'test'

super

end

At this point we’ve added all the plumbing, so it’s time for a reward.

Over in our controllers, here’s what we can do now:

Download buffet/app/controllers/accounts_controller.rb

class AccountsController < ApplicationController

ssl_required :create, :change_password

ssl_allowed :show

def create

Non-SSL access will be redirected to SSL

end

def change_password

Non-SSL access will be redirected to SSL

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/app/controllers/application.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/app/controllers/application.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/app/controllers/accounts_controller.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=228

49. FLIPPING ON SSL 229

def show

Works either with or without SSL

end

def index

SSL access will be redirected to non-SSL

end

end

Creating accounts and changing passwords involves passing sensitive

information around, so we ensure SSL is required for those actions. If

the incoming request for the those actions isn’t using the https protocol,

then the request will be redirected to https. Showing an account doesn’t

display any sensitive information, but SSL can be used. In other words,

it won’t redirect to http if the incoming request is https. And, in this case,

the listing should always be on an http connection, so we don’t have to

declare anything for it.

Before we go, there’s one subtle, but important, thing we need to check.

By default, Rails will look for static assets (images, JavaScript files,

etc.) in the public directory. But say we’ve configured our production

environment to link these assets from a dedicated server, like so:

config.action_controller.asset_host = "http://my-assets.com"

Since we’ve hard-coded the protocol, actions run under SSL will have

assets linked via http. Some browsers pop up a security warning when

this happens, and consequently users get a little freaked. So to make

sure all the assets are automatically linked using the same protocol as

the incoming request, we need to remove the explicit protocol:

config.action_controller.asset_host = "my-assets.com"

Discussion

The SslRequirement module adds the before_filter at the point at which it’s

included. If you want to run other filters before that, you must declare

them ahead of including the module.

There are other valid reasons for overwriting the ssl_required? method.

For example, you could inspect an @account variable and always flip to

SSL if it’s a premium account. That is, you don’t have to rely solely on

the declarative style.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=229

Snack Recipe 50

Locking Down Sensitive Data

If you can read only one recipe in this book, make it this one! The steps

are trivial, but oh! so easy to forget. And the cost of forgetting—well,

you don’t want to find out.

Here’s an innocent looking model:

class User < ActiveRecord::Base

end

The users table has a number of boolean columns, including is_admin

and gets_free_orders. Of course we don’t put those on the account cre-

ation form, otherwise anyone can make themselves special. But as the

model stands, they don’t need no stinkin’ form to rule our system!

Anyone with a ’net connection and a frisky spirit can just post values

for those columns to our create action:

@user = User.new(params[:user])

It’s an easy fix though. We can protect sensitive attributes from bulk

assignment by using attr_accessible in our model to only name the attributes

that are available for bulk-assignment:64

Download events/app/models/user.rb

attr_accessible :name, :email, :password

Now to upgrade a user, we’d have to make an explicit assignment in

code, like so:

@user.is_admin = true

@user.save

But don’t put this recipe down just yet!

Here’s an innocent looking action:

def index

@users = User.find(:all)

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @users }

64. The attr_protected method does the reverse, and in so doing leaves the door open if you

add new columns. It’s generally better to use positive access control with attr_accessible.

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/app/models/user.rb

50. LOCKING DOWN SENSITIVE DATA 231

end

end

Of course we don’t show any sensitive user information on the HTML

page, even if it’s viewable by admins only. But as the action stands,

prying eyes don’t need no stinkin’ HTML page to compromise our data!

They’ll just send in the xml format and read the data in raw XML form.

It’s an easy fix though. We just override the to_xml method in our model

to only spit out certain attributes:

Download events/app/models/user.rb

def to_xml(options = {})

default_only = [:id, :name, :email]

options[:only] = (options[:only] || []) + default_only

super(options)

end

Do yourself a big favor. Spend a couple minutes having a look through

your models and your tables (yes, especially if your app is already in

production). Add attr_accessible and define to_xml where appropriate.

You don’t have to tell anybody you did....

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/events/app/models/user.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=231

Part XII

Deployment and Capistrano

Recipes

232
Prepared exclusively for Jeanne McDade

Recipe 51

Custom Maintenance Pages

Problem

Bad things sometimes happen to good applications. When you need

to put out a fire (or do maintenance chores), you want to quickly put

up a maintenance page then get right to work. And you want the tem-

porary page to include your familiar logo, award-winning web design,

and a little message that shows you care. Then when you’ve got every-

thing under control, you want to put the application back online just

as quickly as you took it down.

Ingredients

• The Capistrano65 gem (version 2.1.0+):

$ gem install capistrano

Solution

If you’ve had the pleasure of using Capistrano66 then you know it lives

to serve you. Need to put up a maintenance page in a hurry? Capis-

trano’s got your back. Rush over to your keyboard and type:

$ cap deploy:web:disable

And when the klaxons stop blaring and the birds start chirping again,

taking down the maintenance page is equally satisfying:

$ cap deploy:web:enable

Great, now for the customization. The standard maintenance page that

comes with Capistrano works in a pinch, but it’s easy to create a cus-

tom maintenance page that sets our app apart from the crowd. Now

we’re no famous web designer, but the guy down the hall is. And all we

need is a Rails template file that shows our logo, some excuse for the

site being down, and an indication when it might return. So he whips

up this one:

65. http://www.capify.org/

66. http://www.capify.org/

Prepared exclusively for Jeanne McDade

http://www.capify.org/
http://www.capify.org/

51. CUSTOM MAINTENANCE PAGES 234

Download capistrano/app/views/admin/maintenance.html.erb

<html xmlns="http://www.w3.org/1999/xhtml"

version="-//W3C//DTD XHTML 1.1//EN" xml:lang="en">

<head>

<title>Custom Maintenance Page</title>

<meta http-equiv="Content-type" content="text/html; charset=utf-8" />

<link href="/stylesheets/maintenance.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="content">

<img src="http://demo.pragmaticstudio.com/images/fr_arr.jpg"

alt="Recipes" />

<h1>

We're currently offline for <%= reason ? reason : "maintenance" %>

as of <%= Time.now.strftime("%I:%M %p %Z") %>.

</h1>

<p>

Sorry for the inconvenience. We'll be back

<%= deadline ? "by #{deadline}" : "shortly" %>.

Please e-mail us

if you need to get in touch.

</p>

</div>

</body>

</html>

There’s nothing extraordinary about this template, but notice the two

variables reason and deadline. That’s our dynamic content: why the site

is down and when it’ll return. So clearly we need to run our hand-

crafted template through the ERb templating system to get a static

HTML file. Then we need to upload it to our web servers. It turns out

that’s exactly what Capistrano does with its stock template when we

run the deploy:web:disable task. We just need to override the default

task in our config/deploy.rb recipe file:

Download capistrano/config/deploy.rb

namespace :deploy do

namespace :web do

desc "Serve up a custom maintenance page."

task :disable, :roles => :web do

require 'erb'

on_rollback { run "rm #{shared_path}/system/maintenance.html" }

reason = ENV['REASON']

deadline = ENV['UNTIL']

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/app/views/admin/maintenance.html.erb
http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=234

51. CUSTOM MAINTENANCE PAGES 235

template = File.read("app/views/admin/maintenance.html.erb")

page = ERB.new(template).result(binding)

put page, "#{shared_path}/system/maintenance.html",

:mode => 0644

end

end

end

Did you know you could use ERb directly like that? It’s easy: Just read

in a template file and let ERb render it into a variable. There’s a neat

trick here, too. The local variables reason and deadline are set based on

environment variables. To make them accessible to our template, we

hand ERb the current binding.

Now we have the maintenance page template all filled out and in mem-

ory. To upload it into a maintenance.html file on all the production web

servers, we use Capistrano’s put command.

Even if we were to run the deploy:web:disable task right now, it wouldn’t

disable access to our application. We’d end up with a system/maintenance.html

file in our Rails app’s public directly, but you’d only see if it you typed

the file name into the browser. Instead, we need it to be shown when-

ever any dynamic request is made to our application.

The Apache web server has an extremely powerful URL rewriting engine

called mod_rewrite67. This works perfectly for what we’re trying to do and

takes just four lines of web server configuration:

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f

RewriteCond %{REQUEST_URI} !\.(css|jpg|gif|png)$

RewriteCond %{SCRIPT_FILENAME} !maintenance.html

RewriteRule ^.*$ %{DOCUMENT_ROOT}/system/maintenance.html [L]

Basically this says to redirect all incoming requests (except those for

our external CSS file and logo) to the static system/maintenance.html file

if it exists.

We can do the same thing with the Nginx web server:

if ($request_filename ~* \.(css|jpg|gif|png)$) {

break;

}

if (-f $document_root/system/maintenance.html) {

rewrite ^(.*)$ /system/maintenance.html last;

break;

67. http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=235

51. CUSTOM MAINTENANCE PAGES 236

}

Now let’s say we’ve been building up to a brand new version of our app,

and it’s so much better that we need to take the application offline to

do a bunch of system stuff. It’ll take about 30 minutes. Here’s where

those environment variables (and the guy down the hall) pay off:

$ REASON="an upgrade to the coolest version ever" \

UNTIL="10:30 AM MST" \

cap deploy:web:disable

Hitting any Rails action shows our custom maintenance page:

Discussion

You might be inclined to try using Rails helper methods, such as time_ago_in_words,

in your maintenance page template. Sorry, this won’t work because

Capistrano doesn’t load the Rails framework when you call tasks. Then

again, if you need helpers in your maintenance page, perhaps it’s doing

too much.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=236

Recipe 52

Running Multi-Stage

Deployments

Problem

You’re using Capistrano to deploy your application into production, and

now you need to deploy the same application to different environments:

staging, testing, bobs_mac, favorite_clients_box, etc.

Ingredients

• The capistrano gem (version 2.1.0+):

$ gem install capistrano

• The capistrano-ext gem:

$ gem install capistrano-ext

Solution

The solution is fairly trivial, but gives insight into the flexibility of Capis-

trano recipe files and how they run. When we’re done you may well find

other ways to improve your deployment recipes.

Normally when we’re just deploying into one environment, we define a

single stanza of roles like this:

Download capistrano/config/deploy.rb

role :web, 'railsrecipes.com'

role :app, 'railsrecipes.com'

role :db, 'railsrecipes.com', :primary => true

But that won’t work if we have multiple environments because the roles

will always be set to our production machines. Instead, we need to

define the roles on a per-environment basis. An easy way to do that

is using a task definition. So for two roles—staging and production—we

need to add two tasks to our recipe file:

Download capistrano/config/deploy.rb

task :staging do

role :web, 'staging.railsrecipes.com'

role :app, 'staging.railsrecipes.com'

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb

52. RUNNING MULTI-STAGE DEPLOYMENTS 238

role :db, 'staging.railsrecipes.com', :primary => true

set :stage, :staging

end

task :production do

role :web, 'railsrecipes.com'

role :app, 'railsrecipes.com'

role :db, 'railsrecipes.com', :primary => true

set :stage, :production

end

Then to set up the roles for a specific environment, we call the corre-

sponding environment task before the task that does the real work:

$ cap staging deploy

$ cap production deploy

Now let’s say we want to change the deployment directory based on the

environment. That is, we need to change the following line to include

the environment name in the path:

set :deploy_to, "/path/to/#{application}"

We might be tempted just to use the stage variable in the string, but

there’s a subtle reason this won’t work. The deploy_to variable is eval-

uated when our recipe is loaded, and we need to defer the evaluation

until after we’ve set the environment up. Typing a couple extra char-

acters to create a proc is all it takes to cause the variable be evaluated

lazily:

set(:deploy_to) { "/path/to/#{application}/#{stage}" }

As a do-it-yourself approach, all this works great. In fact this idiom

became so common that Jamis Buck packaged it up in the capistrano-

ext gem. Now that you know how it works, let’s give it a whirl. With the

gem installed, we just need to add this to the top of our recipe file:

Download capistrano/config/deploy.rb

set :stages, %w(staging testing production bobs_mac)

set :default_stage, 'staging'

require 'capistrano/ext/multistage'

Now we can clean up some code. We put code that’s specific to the

testing stage, for example, in the config/deploy/testing.rb file:

Download capistrano/config/deploy/testing.rb

role :web, 'testing.railsrecipes.com'

role :app, 'testing.railsrecipes.com'

role :db, 'testing.railsrecipes.com', :primary => true

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy/testing.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=238

52. RUNNING MULTI-STAGE DEPLOYMENTS 239

set :deploy_to, "/path/to/#{application}/testing"

Notice here we don’t need to lazily evaluate the deploy_to variable because

of the order in which the files are loaded. As long as the :application

variable is set before the capistrano/ext/multistage recipe is loaded. (In

general, it’s probably good practice to put all such require statements

at the end of your deploy.rb file anyway.)

To deploy to the testing environment, we run

$ cap testing deploy

And if we don’t specify an environment, we’ll deploy to the staging envi-

ronment by default. If you don’t set :default_stage, you’ll get an error if

you try to do anything without explicitly specifying a stage. Some peo-

ple prefer this to having a default stage. If you do set a default stage,

it’s always a good ideas to pick a default other than production. That

way you won’t accidentally push new code out into the wild, wooly web.

I knew a guy who did that once...

Discussion

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=239

Recipe 53

Creating New Environments

Problem

You need to run your application in various modes which have environment-

specific settings, and the default Rails environments aren’t enough.

Solution

There’s nothing special about the default runtime environments—development,

test, and production—except that most projects need those at a mini-

mum. That doesn’t stop us from adding new environments. If we have

special requirements for our Rails app when it’s running on the staging

servers, for example, we just add a staging.rb file to the config/environments

directory:

Download buffet/config/environments/staging.rb

config.cache_classes = true

config.action_controller.consider_all_requests_local = false

config.action_controller.perform_caching = true

GATEWAY_URL='https://test.authorize.net/gateway/transact.dll'

For the most part it’s the same as the production-level configuration,

but there’s a twist. In production this particular application charges

credit cards via an external payment gateway. In staging we don’t want

to be charging real credit cards, so we set the GATEWAY_URL variable

to point to a test server. In production.rb, it points to the honest-to-

goodness live server.

Before going any further, we also need to configure a database for the

staging environment to use. That’s as easy as adding a staging stanza

to our config/database.yml file:

Download buffet/config/database.yml

staging:

adapter: mysql

encoding: utf8

database: buffet_staging

username: stage

password: fright

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/config/environments/staging.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/config/database.yml

53. CREATING NEW ENVIRONMENTS 241

Now when we run with staging as the current environment, Rails will

load staging.rb instead of one of the default environment files and use

the staging database. Let’s try it first in the console:

$ ruby script/console staging

Loading staging environment

>> RAILS_ENV

=> "staging"

>> GATEWAY_URL

=> "https://test.authorize.net/gateway/transact.dll"

That’s a good sanity check that our staging.rb is getting picked up. Now

let’s fire up the app with its staging face on:

$ ruby script/server -e staging

** Starting Rails with staging environment...

The way we set the staging environment when running the app depends

on how we start it. If we’re using the mongrel_cluster gem to run a pack of

Rails apps, for example, we’d need to set the environment in the cluster

configuration file. You get the idea. Wherever we set production before

will change to staging.

Remember that some of the built-in Rake tasks rely on the RAILS_ENV

environment variable to know which database to use. (The default is

development.) So if we’re running migrations in the staging environ-

ment, we need to call it out:

$ RAILS_ENV=staging rake db:migrate

We can simplify that a bit by writing a custom Rake task that sets

RAILS_ENV for us and invokes the :environment task to load Rails in proper

environment:

Download buffet/lib/tasks/environments.rake

desc "Sets the environment variable RAILS_ENV='staging'."

task :staging do

ENV['RAILS_ENV'] = RAILS_ENV = 'staging'

Rake::Task[:environment].invoke

end

desc "Sets the environment variable RAILS_ENV='production'."

task :production do

ENV['RAILS_ENV'] = RAILS_ENV = 'production'

Rake::Task[:environment].invoke

end

This spares us a few keystrokes every time we run a Rake task that

needs the environment name:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/lib/tasks/environments.rake
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=241

53. CREATING NEW ENVIRONMENTS 242

$ rake staging db:migrate

Discussion

You can take this as far as necessary with multiple environments and

special configuration values for each.

Also See

• What if you want to deploy to different machines depending on the

Rails environment? See Recipe 52, Running Multi-Stage Deploy-

ments, on page 237 to learn how to set up Capistrano for multi-

stage environments.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=242

Recipe 54

Managing Plugin Versions

Problem

You built your application with the help of some Rails plugins. Going

forward you want to keep those plugins up to date, but on your own

terms. And the last time you used svn:externals to link in a plugin, the

remote Subversion repository you linked to went for a long vacation just

as you were trying to deploy your app. So you need to take control of

the plugin code and still be able to update to new revisions when you’re

ready.

Ingredients

• The Piston gem:

$ gem install piston

Solution

Piston68 lets us import plugins into our local Subversion repository and

sync them up with their master copy whenever we want. Yes, Piston is

awesome. So let’s pistonize a plugin already.

Say our app needs some super-duper pagination—I always reach for

the will_paginate plugin. First we import it straight away into our Sub-

version repository:

$ cd vendor/plugins

$ piston import svn://errtheblog.com/svn/plugins/will_paginate

That exports the plugin into the vendor/plugins/will_paginate directory. To

finish the import, we just need to commit the new files:

$ svn commit -m 'Importing local copy' vendor/plugins/will_paginate

What we have now is our own private copy of the plugin in our local

repository. We can even modify the plugin code, check in our changes,

and manage the plugin just like our application code. So far so good.

Now normally taking a copy of code like this means we couldn’t easily

sync up with future revisions of the plugin. But Piston keeps a little

68. http://piston.rubyforge.org/

Prepared exclusively for Jeanne McDade

http://piston.rubyforge.org/

54. MANAGING PLUGIN VERSIONS 244

secret for us: it remembers where the code came from. Imagine that

one day the good folks who created the will_paginate plugin release a

tasty new version. It happens to be a slow day around the office and

we’re itchin’ to try something new, so we get the latest revision:

$ piston update vendor/plugins/will_paginate

Processing 'vendor/plugins/will_paginate'...

Fetching remote repository's latest revision and UUID

...

Updated to r413 (2 changes)

This merges any of our local changes with the latest revision that’s on

the remote repository. (If for reason there’s a conflict, Piston doesn’t

detect it, but Subversion will reject the next commit.) In other words,

our changes are preserved when we take new updates. After running

the tests, we check the updates back into our local repository:

$ svn commit -m 'Updated to latest version' vendor/plugins/will_paginate

Then we remember that a new version of our application is getting rolled

out at the end of the week. It would be a serious bummer if another

new version of the will_paginate plugin was released and the new guy

on our project mistakenly merged it into our version right before the

deployment. So let’s prevent that from happening by locking the version

we tested:

$ piston lock vendor/plugins/will_paginate

Pistonizing plugins is so easy that before the deployment we go ahead

and pistonize all the plugins our app depends on. That way it won’t

matter if Bob’s Basement Plugins(TM) repository decides to curl up and

die while we’re trying to deploy.

Then later on when we want to sync back up with the latest plugin

revision on its remote repository, we can unlock our copy and update

it:

$ piston unlock vendor/plugins/will_paginate

$ piston update vendor/plugins/will_paginate

$ svn commit -m 'Updated again' vendor/plugins/will_paginate

And we can run piston update in our top-level plugins directory if we want

to update all piston-managed plugins.

Piston makes light work of plugin dependency management. Just type

a couple of commands and you’re on to other tasks. And once you’ve

pistonized a plugin, folks on your project who don’t have the Piston

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=244

54. MANAGING PLUGIN VERSIONS 245

gem installed can happily check out and update the plugin via your

local Subversion repository.

Discussion

If you’re currently using svn:externals to manage your plugins, you can

use piston convert to convert them to Piston-managed folders.

One important caveat: Piston doesn’t preserve change history from the

remote repository. Piston just takes the latest revision, or differences

between what you currently have and the latest revision, and merge

those changes into your checked out copy. However, you can examine

the changes before committing them to your local repository.

Also See

Clearly you could also use Piston to manage the version of Rails in your

vendor/rails directory. However, the update process that Piston uses is

known to be slow. This usually isn’t a big deal with plugins because

they tend to be relatively small chunks of code that don’t change all

that often. However, updating and storing local copies of Rails in each

application you write feels a tad heavy-handed. I usually just keep ver-

sions of Rails checked out on the production servers, and symlink the

application’s vendor/rails directory to a specific version after deployment

using a Capistrano after hook.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=245

Snack Recipe 55

Safeguarding the Launch

Codes

You really don’t want the production database password rattling around

on your development machine. You know, the laptop you take with you

to software conferences and the local Hackers Anonymous meetings.

But how do you deploy without the launch codes?

Well, let’s start by putting the real database.yml file, the one with all

the secrets, in one place: our production box. Then we can restrict

access to it using accounts, permissions, and all that good operating

system stuff. This file will not be checked in to our regular project—the

project will use a version that simply gives access to the development

and testing databases.

Then when it comes time to push the deploy button, we’ll let Capis-

trano69 copy the real database.yml file into place for us. All we need is

a hook that automatically gets triggered after the latest version of our

code has been checked out to the release_path directory. We’ll add it to

the deploy namespace of our deploy.rb file, like so:

Download capistrano/config/deploy.rb

namespace :deploy do

task :copy_database_configuration do

production_db_config = "/path/to/production.database.yml"

run "cp #{production_db_config} #{release_path}/config/database.yml"

end

after "deploy:update_code", "deploy:copy_database_configuration"

end

Remember that run executes the given command on the remote machine.

So our database.yml file gets slipped into place just before the applica-

tion is restarted, and our hands are clean.

69. http://www.capify.org/

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://www.capify.org/

Snack Recipe 56

Config Files On-The-Fly

Jamie Orchard-Hays has developed Web applications since the late 1990s. He’s

worked in ASP, ColdFusion, JSPs, Tapestry, and Ruby on Rails. He created the Ele-

mental plugin for Rails and contributed the Hpricot Mapper to Solr-Ruby. Cur-

rently he resides in beautiful Charlottesville, Virginia.

You need to set up your deployment servers with various and sundry

configuration files: Mongrel, Apache, nginx, and so on. Since these files

often share bits of information, such as the name of your app, keeping

them in sync is tedious and prone to error. Wouldn’t it be nice to make

this all a part of a repeatable deployment step?

Capistrano70 to the rescue (again)! Let’s take the case where we want to

create a Mongrel cluster configuration file and drop it into our remote

server directory. We don’t need a local file to do that. Instead, we can

generate the configuration bits inside our deploy.rb recipe and add it to

a task in the deploy namespace, like so:

Download capistrano/config/deploy.rb

namespace :deploy do

task :upload_cluster_configuration, :roles => :app do

cluster_config = <<-CMD

port: 8000

servers: 4

address: 127.0.0.1

cwd: #{deploy_to}/current

pid_file: tmp/pids/#{application}-mongrel.pid

user: capistrano

group: capistrano

environment: production

CMD

put cluster_config, "#{release_path}/config/mongrel_cluster.yml"

end

after "deploy:update_code", "deploy:upload_cluster_configuration"

end

One benefit of assembling the configuration on the fly like this is being

able to reference existing variables such as application and deploy_to in

our recipe to keep things dry.

70. http://www.capify.org/

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://www.capify.org/

56. CONFIG FILES ON-THE-FLY 248

The secret ingredient in this recipe is the put command. It effectively

uploads the data (our configuration info) to the given file location. Then

last, but by no means least, this is hooked so it runs after the update_code

task.

So now, every time we run cap deploy, we know our Mongrels will

restart with a consistent configuration. Now, imagine how easy setting

up a new deployment box might be if we had all our configuration files

generated this way.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=248

Snack Recipe 57

Preserving Files Between

Deployments

One of the obvious joys of using Capistrano71 is the deploy task. It

puts the current version of your app in a brand new directory on the

server, then restarts everything from there. But if your app stores user-

uploaded pictures, search engine indexes, and other artifacts in the

current deployment directory, you lose them when you redeploy.

The solution? Put files you need to preserve across deployments in

the shared directory rather than RAILS_ROOT. Then during the deploy-

ment process, have Capistrano link the shared assets into your current

deployment directory. Here are some example tasks:

Download capistrano/config/deploy.rb

namespace :assets do

task :symlink, :roles => :app do

assets.create_dirs

run <<-CMD

rm -rf #{release_path}/index &&

rm -rf #{release_path}/public/images/pictures &&

ln -nfs #{shared_path}/index #{release_path}/index &&

ln -nfs #{shared_path}/pictures #{release_path}/public/images/pictures

CMD

end

task :create_dirs, :roles => :app do

%w(index pictures).each do |name|

run "mkdir -p #{shared_path}/#{name}"

end

end

end

after "deploy:update_code", "assets:symlink"

Notice that we can chains tasks together: the symlink task first invokes

the create_dirs task to make sure the shared directories exist. Then we

use symbolic links to point our current release to the shared search

71. http://www.capify.org/

Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://www.capify.org/

57. PRESERVING FILES BETWEEN DEPLOYMENTS 250

indexes and pictures. The after hook makes sure every deployment has

all the previously created goodies.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=250

Snack Recipe 58

Responding To Remote

Prompts

Thanks to Jamis Buck for the idea and technical bits for this recipe.

Sometimes, the remote machines you’re controlling with Capistrano

talk back, and even go so far as to ask a question! When that happens,

how do you answer via your local terminal?

The answer lies in a special use of the venerable run method. You gen-

erally use it to fire off a command to all the servers in a given role.

However, you can also hang a block off the run call and it’ll get invoked

when the remote process responds. You get three block parameters:

• channel is the SSH channel on which you can send data back to

the remote process

• stream identifies the response stream as :err or :out

• output is, you guessed it, the data that was output from the remote

process

The run method gets us close to a solution, but when a question comes

in we need to prompt for the answer in our local console. That requires

one more ingredient: Capistrano uses the HighLine72 library to process

local console input and output. We can use it, too, simply by accessing

the underlying ui object.

Knowing all that, we can write a generic method that takes the name of

the command we want to run and the question we expect it to ask us:

def run_with_prompt(command, expected_question)

run command, :once => true do |channel, stream, output|

if output =~ /#{expected_question}/

answer = Capistrano::CLI.ui.ask(expected_question)

channel.send_data(answer + "\n")

else

allow the default callback to be processed

Capistrano::Configuration.default_io_proc.call(channel, stream, output)

end

end

end

72. http://rubyforge.org/projects/highline/

Prepared exclusively for Jeanne McDade

http://rubyforge.org/projects/highline/

58. RESPONDING TO REMOTE PROMPTS 252

Note here that the ui.ask method starts the interactive prompt if we get

the question we expect. Also, we used the :once => true option on the

run method so that it only runs on a single remote host. You’ll want to

cache the response and reuse it for similar prompts if you’re running

in a multi-machine environment.

Then we can reuse the method inside any task. For example, if we’re

updating packages using apt-get, we can respond to its specific ques-

tion:

task :app_get_update, :roles => :app do

run_with_prompt("apt-get update", "Are you sure?")

end

As one more interesting use of the run method with a stream (thanks to

Chris Wanstrath73), this task starts up script/console on a remote server:

Download capistrano/config/deploy.rb

desc "Open script/console on the remote machine"

task :console, :roles => :app do

input = ''

cmd = "cd #{current_path} && ./script/console #{ENV['RAILS_ENV']}"

run cmd, :once => true do |channel, stream, data|

next if data.chomp == input.chomp || data.chomp == ''

print data

channel.send_data(input = $stdin.gets) if data =~ /^(>|\?)>/

end

end

73. http://errtheblog.com/posts/19-streaming-capistrano

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://errtheblog.com/posts/19-streaming-capistrano
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=252

Recipe 59

Generating Custom Error

Pages

By Giles Bowkett (http://gilesbowkett.blogspot.com)

Giles Bowkett is a programmer, actor, screenwriter, DJ, musician, artist, blogger, and dharma

bum. Originally from Chicago, he now lives in Hollywood, Silicon Valley, the northern New

Mexico wilderness, and Black Rock City. John Dewey is a Ruby developer for the Los Ange-

les Times, and better at tetherball than you (unless there’s ropies).

Problem

You want a consistent design across your error pages, and you want

to be able to maintain this design easily in the face of change. The

standard Rails approach to template reuse—partials and layouts—is

great, but you can’t use them in the dynamic way because you can’t

write error pages for Rails which depend on Rails working.

Ingredients

• The Capistrano gem:74

$ gem install capistrano

Solution

In Recipe 51, Custom Maintenance Pages, on page 233 we learned how

to use Capistrano and ERb to deploy custom maintenance pages. Using

the same combination of power tools, we can cook up a quick and light

implementation of partials and layouts for our error pages.

Start with a simple CSS file. You’ll want to base it on the general CSS for

your application, but use only a subset necessary for the design of your

error pages. You want your CSS cleanly separated from the CSS within

Rails. Even if you’re not using dynamic options like Sass75 or CSS in

ERb, in some error states your system will redirect every request to the

error page, including requests for CSS files.

74. http://www.capify.org/

75. http://haml.hamptoncatlin.com/docs/sass

Prepared exclusively for Jeanne McDade

http://gilesbowkett.blogspot.com
http://www.capify.org/
http://haml.hamptoncatlin.com/docs/sass

59. GENERATING CUSTOM ERROR PAGES 254

Next comes the layout. We can use ERb syntax, but without Rails’

helper methods, so things like link_to and the JavaScript helpers are

off limits. Just create a skeleton HTML document and add in standard

ERb-quoted code. Here’s an example layout:

Download capistrano/config/deploy/errors/error.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">

<head>

<title>

<%= title %>

</title>

<style type="text/css">

<%= File.read(stylesheet) %>

</style>

</head>

<body>

<div>

<h1>

<%= heading %>

</h1>

</div>

<div>

<%= body %>

</div>

</body>

</html>

We’ll put this error.html.erb file, and our errors.css stylesheet file, in the

config/deploy/errors directory.

Then we need to create a partial for each error condition. These will just

include the error-specific HTML we want to include in the page. Here

are a few examples:

Download capistrano/config/deploy/errors/_404.html.erb

<p>

We're terribly sorry, but we couldn't find that page.

</p>

Download capistrano/config/deploy/errors/_500.html.erb

<p>

Something failed spectacularly. Of course, it's all our fault!

The klaxons are blaring and we'll fix it promptly.

</p>

These files go in the config/deploy/errors directory, as well.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy/errors/error.html.erb
http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy/errors/_404.html.erb
http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy/errors/_500.html.erb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=254

59. GENERATING CUSTOM ERROR PAGES 255

OK, next we need to render these error templates. We don’t have Rails

to do it for us, so we’ll just create a simple ERb template engine in a

method of our Capistrano config/deploy.rb recipe file:

Download capistrano/config/deploy.rb

def template_engine(template, partial=nil, stylesheet=nil, opts={})

require 'erb'

unless opts.empty?

set :title, opts[:title]

set :heading, opts[:heading]

set :body, ERB.new(File.read(partial)).result(binding)

end

ERB.new(File.read(template)).result(binding)

end

This code first takes a hash and turns it into variables, then passes the

partial and its template to ERb to combine them all together. When it

passes ERb a binding, it gives ERb access to the variables we define

here. Because the current binding in this code will contain all these

variables being set, we can use the same variables in both our layouts

and our partials. This means that when we set the title variable, for

example, we can put it in the HTML title attribute of our error page and

in a nice readable header, as well.

Once the error pages have been generated, we want to upload them

to our production servers. We can automate the entire process with a

Capistrano task:

Download capistrano/config/deploy.rb

def error_template_path(filename)

["config", "deploy", "errors", filename].join("/")

end

desc "Create error pages."

task :create_error_pages, :roles => [:web, :app] do

errors = {

"404" => { "title" => "Page Not Found",

"heading" => "Page Not Found" },

"422" => { "title" => "Oops!",

"heading" => "The data you submitted was invalid." },

"500" => { "title" => "Oops!",

"heading" => "Kaboom!" }

}

errors.each_key do |error|

template = error_template_path("error.html.erb")

partial = error_template_path("_#{error}.html.erb")

stylesheet = error_template_path("error.css")

put template_engine(template, partial, stylesheet,

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://media.pragprog.com/titles/fr_arr/code/capistrano/config/deploy.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=255

59. GENERATING CUSTOM ERROR PAGES 256

:title => errors[error]["title"],

:heading => errors[error]["heading"]

), "#{current_path}/public/#{error}.html",

:mode => 0644

end

end

In the create_error_pages task—which runs for both the :web and :app

roles—we first specify a nested hash of error codes, titles, and head-

ings.76 We send that to the template engine, along with the filenames

expanded into error template paths by the error_template_path method.

Finally, the put command uploads the error page contents into their

respective files in the public directory on the server.

Now we have a convenient way to turn ERb templates into real files on

the server. For example, we could use the template_engine method to

deploy maintenance pages as described in Recipe 51, Custom Mainte-

nance Pages, on page 233.

Discussion

You could extend this example just a little bit to get a full-fledged sys-

tem for deploying static web sites. Before you do that, however, look

into StaticMatic77—it’s a nice, compact system that incorporates the

concise, powerful, and popular Haml and Sass meta-markup languages

to generate static sites.

76. The 422 HTTP code, which stands for "Unprocessable Entity", gets an error page in

Rails by default as part of Rails’ REST support.
77. http://staticmatic.rubyforge.org/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://staticmatic.rubyforge.org/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=256

Part XIII

Big-Picture Recipes

257
Prepared exclusively for Jeanne McDade

Recipe 60

Avoid Starting From Scratch

By Sean Mountcastle (http://seanmountcastle.com)

Sean has been writing software for large telecom and internet infrastructure systems for

over a decade. He lives with his wife and children in Northern Virginia. In his spare time, he

enjoys family projects, gaming and learning new programming languages.

This recipe was inspired by a post on Josh Susser’s blog.78

Problem

One of the great features of Rails is the convention for directory layout.

Each time you create a new application using the rails command, all of

the necessary files and directories are generated for you. But then you

have to dress it up with your stuff: installing plugins, copying in useful

libraries, static assets, and so on. Wouldn’t it be nice if you could save

time by creating new Rails applications with all of your customizations

already in place?

Solution

It’s as easy as maintaining an exemplar Rails project in your version

control repository and using it as the cookie-cutter for every new project.

First we create the standard Rails application structure:

$ rails exemplar

Then we remove those pesky files that we don’t need in version control:

$ cd exemplar

$ rm log/*
$ rm public/index.html

$ rake tmp:clear

The database.yml file generally has database names that are specific to

each project, so we’ll just store it as database.yml.example:

$ mv config/database.yml config/database.yml.example

Now that our exemplar application is just the way we like it, it’s time

to import the directory into our version control repository. Depending

78. http://blog.hasmanythrough.com/2006/12/28/stop-using-the-rails-command

Prepared exclusively for Jeanne McDade

http://seanmountcastle.com
http://blog.hasmanythrough.com/2006/12/28/stop-using-the-rails-command

60. AVOID STARTING FROM SCRATCH 259

on how you access your Subversion79 repository—either via HTTP, the

SVN protocol, or local disk access—run one of the following commands:

$ svn import -m "Initial import" . http://your-svn-server/exemplar/trunk

$ svn import -m "Initial import" . svn://your-svn-server/exemplar/trunk

$ svn import -m "Initial import" . file:///repos/exemplar/trunk

When the import finishes, we have all our files safely tucked away in

the repository. Next we move the directory we just imported out of the

way and check out the exemplar project anew so we have a Subversion-

managed local directory80:

$ mv exemplar exemplar.bak

$ svn co file:///repos/exemplar/trunk exemplar

Rails will end up recreating those pesky temporary files for each appli-

cation, but we can modify the Subversion properties to ignore those

files:

$ cd exemplar

$ svn propset svn:ignore "*.log" log/

$ svn propset svn:ignore "*" tmp/

$ svn propset svn:ignore "database.yml" config/

At this point we have a basic Rails application directory structure checked

in to our Subversion repository and a local copy checked out in the

exemplar directory. Now it’s time to add some of our own goodies.

Everyone uses a plugin (or ten) in all their Rails apps, so let’s add one

of those to our exemplar using Subversion externals:

$ script/plugin -x install svn://errtheblog.com/svn/plugins/will_paginate

(We could have also checked in the plugin to our local repository using

Piston, as described in Recipe 54, Managing Plugin Versions, on page 243.)

We might also have common static assets and Rake tasks, so we’ll copy

those over to the exemplar, too:

$ cp /my/useful/scripts/*.js public/javascripts/

$ cp /my/useful/styles/*.css public/stylesheets/

$ cp /my/useful/errorpages/{404,500}.html public/

$ cp /my/useful/tasks/*.rake lib/tasks/

Finally, we commit all these changes and additions back into the repos-

itory:

79. I use Subversion, so you’ll need to adjust the commands to suit your version control

system.
80. We’ll access the repository via the local disk from here forward, but the HTTP and

SVN protocols work equally well.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=259

60. AVOID STARTING FROM SCRATCH 260

Mike says. . .

I (Heart) Automation

While this recipe may not seem very advanced, it highlights one
technique that separates the newbs from the masters: auto-
mation. A little alarm bell goes off in my head the second time I
have to type in a bunch of commands. Experience says it won’t
be the last time, and I worry that the next time I’ll forget to do
something (perhaps because I fell asleep at the keyboard from
sheer boredom). Automation saves time and, more important,
ensures that tasks are done consistently.

$ svn commit -m "Updated properties and added common goodies"

Here’s where the rubber meets the road. When we need to create a new

Rails application, we don’t use the rails command. Instead, we just make

a copy of our exemplar project, like so:

$ svn copy -m "Creating my new app"

file:///repos/exemplar/trunk file:///repos/my_new_app/trunk

That makes a copy inside the repository, so we need to check it out to

our local my_new_app directory, for example:

$ svn co file:///repos/my_new_app/trunk my_new_app

This gives us everything we need to get started. Before writin’ some

code, we need make a few quick project-specific adjustments:

1. Copy config/database.yml.example to config/database.yml

2. Change the database names appropriately for the new application

3. Change the session key in config/environment.rb

Now all that’s left is buildin’ the application...

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=260

Recipe 61

Fail Early

By Mike Naberezny (http://maintainable.com)

Mike is the president of Maintainable Software, LLC. He’s a member of the Zend Education

Advisory Board, regularly speaks at software conferences, and contributes to several open

source projects.

Problem

You’ve no doubt had this experience: You run your application against

the wrong migration version and it either blows up in spectacular ways

or, worse yet, introduces subtle behavioral changes. It’s one thing when

this happens on your development box. But when it happens in produc-

tion, the results can range from embarrassing to downright disastrous.

Solution

Let’s corner this migration issue before it has a chance to run amuck—

indeed, before our Rails application even starts.

Rails 2.0 introduced the config/initializers directory as a place to store

(you guessed it) initialization code without polluting the environment.rb

file. Each Ruby file in this directory runs on startup for all environ-

ments. So we’ll just add a check_migration_version.rb file with the follow-

ing:

Download buffet/config/initializers/check_migration_version.rb

current_version = ActiveRecord::Migrator.current_version rescue 0

highest_version = Dir.glob("#{RAILS_ROOT}/db/migrate/*.rb").map { |f|

f.match(/(\d+)_.*\.rb$/) ? $1.to_i : 0

}.max

unless defined?(Rake) # skip when run from tasks like rake db:migrate

if current_version != highest_version

abort "Expected migration version #{highest_version}, \

got #{current_version}"

end

end

This code checks that the migration version in our database is the same

version as the biggest numbered migration file in our db/migrate direc-

tory. If it’s not, we’re in for trouble. So we fail early with a message to

get our attention.

Prepared exclusively for Jeanne McDade

http://maintainable.com
http://media.pragprog.com/titles/fr_arr/code/buffet/config/initializers/check_migration_version.rb

61. FAIL EARLY 262

Now imagine that someone on our team checks in a new migration file

to the version control repository. We bumble in to the office in the morn-

ing and check out all the latest code, but we get interrupted and forget

to run rake db:migrate. No worries. When we fire up the application,

we’re already on top of the problem:

$ script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

...

** Starting Rails with development environment...

Expected migration version 4, got 3

Exiting

Things can and do go wrong, so it’s better to be safe than sorry, espe-

cially when dealing with production deployments.

Discussion

This technique works equally well for other application-level invariants.

For example, if your app depends on specific MySQL database encod-

ings, adding this initializer gives you an early-warning system:

Download buffet/config/initializers/check_database_encodings.rb

DATABASE_ENCODING = "utf8" unless defined? DATABASE_ENCODING

variables = %w(character_set_database

character_set_client

character_set_connection)

variables.each do |v|

ActiveRecord::Base.connection.

execute("SHOW VARIABLES LIKE '#{v}'").each do |r|

unless r[1] == DATABASE_ENCODING

abort "Kindly set your #{r[0]} variable to '#{DATABASE_ENCODING}'."

end

end

end

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/config/initializers/check_database_encodings.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=262

Recipe 62

Analyzing Your Log Files

By Geoffrey Grosenbach (http://nubyonrails.com)

Geoffrey Grosenbach is the host of the Ruby on Rails Podcast (http://podcast.rubyonrails.org)

and producer of PeepCode Screencasts (http://peepcode.com). He blogs at Nuby on Rails

(http://nubyonrails.com).

Problem

You want to extract information from your log files for improved analy-

sis. But the standard Rails log format doesn’t contain enough data.

Solution

A vanilla Rails production log file might look like this:

Processing PeopleController#index (for 74.6.24.207 at 2007-11-05 09:30:44) [GET]

Session ID: BAh7BzoMY3NyZl9pZCIlNmIxMTY3NDA5YmNlOGIyYzk3ZD

Parameters: {"action"=>"index", "controller"=>"people"}

Rendering template within layouts/people

Rendering people/index

Completed in 0.03973 (25 reqs/sec) | Rendering: 0.03875 (97%) |

DB: 0.00027 (0%) | 200 OK [http://yourdomain.com/people]

There’s enough information there to do rudimentary analysis, but what

if we wanted to do performance analysis, or look at what happens at

particular times? There’s no consistent timestamping of log entries. So

the first step is to massage the log file format.

In order to change the format of the log files, we need to make sure

we’re using a logger that supports customization. Unfortunately, the

logger that comes with Rails 2.0 doesn’t, so we have to change our

environment to force Rails to use the older, more flexible logger:

config.logger = RAILS_DEFAULT_LOGGER = Logger.new(config.log_path)

This older Logger class lets us specify a custom formatter. We’ll see the

implementation shortly—for now, let’s just see how we tell the logger to

use it.

require 'recipes_log_formatter'

config.logger.formatter = RecipesLogFormatter.new

And that’s pretty much it. We’ll probably want to change the default

log level, so the whole stanza will look like this in our production.rb

environment file:

Prepared exclusively for Jeanne McDade

http://nubyonrails.com
http://podcast.rubyonrails.org
http://peepcode.com
http://nubyonrails.com

62. ANALYZING YOUR LOG FILES 264

Rails 2.0 Has a New Logger

Back in the old days (prior to Rails 2.0), Rails used Ruby’s Logger

class for the default Rails logger. Nowadays Rails uses a custom
BufferedLogger as the default logger. It’s tailored to be as fast as
possible. Unfortunately, that means it doesn’t support custom
log entry formats. Consequently, we need to assign the (old)
Logger using config.logger= in this recipe.

Download buffet/config/environments/production.rb

require 'recipes_log_formatter'

config.logger = RAILS_DEFAULT_LOGGER = Logger.new(config.log_path)

config.logger.formatter = RecipesLogFormatter.new

config.logger.level = Logger::INFO

(Having to set RAILS_DEFAULT_LOGGER as well as config.logger is unfortu-

nate, but is nonetheless required. Without it, script/server won’t use our

logger, for example.)

Now, we could have simply opened up the Logger class and redefined

how log entries are formatted. But the Logger class offers us a way to

avoid poking around in its internals. By assigning a custom formatter

using the formatter= method, we leave the Logger to its business of log-

ging messages. Then when it’s time to format a log entry, the Logger will

invoke the call method of its custom formatter.

Which means we need to define our RecipesLogFormatter with a call

method:

Download buffet/lib/recipes_log_formatter.rb

class RecipesLogFormatter

def call(severity, time, program_name, message)

datetime = time.strftime("%b %d %H:%M:%S")

message = (String === message ? message : msg.inspect)

"#{datetime} -- #{message}\n"

end

end

The call method receives four parameters: the log entry’s severity, when

it occurred, the name of the program it occurred in, and the message to

be logged. Our formatter only uses the time and the message, ignoring

the other parameters. The message parameter can be any object, so

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/config/environments/production.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/lib/recipes_log_formatter.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=264

62. ANALYZING YOUR LOG FILES 265

remember to convert it to a string if it’s not already a string (we just

used inspect).

Now when we run our application in production, we’ll see a timestamp

for each log entry in the production.log file:

2007-11-05 09:42:46 -- Processing PeopleController#index...

2007-11-05 09:42:46 -- Session ID: BAh7BzoMY3...

2007-11-05 09:42:46 -- Parameters: {"action"=>"index", "controller"=>"people"}

2007-11-05 09:42:46 -- Person Load (0.000286) SELECT * FROM `people`

2007-11-05 09:42:46 -- Rendering template within layouts/people

2007-11-05 09:42:46 -- Rendering people/index

2007-11-05 09:42:46 -- Completed in 0.04700 (21 reqs/sec) |

Rendering: 0.04554 (96%) | DB: 0.00029 (0%) | 200 OK

So far so good. Things get more exciting when you consider that we can

easily modify the call method to format log entries so that they conform

to formats recognized by existing log file analyzers. Say, for example,

we want to generate log files in the syslog format. 81 Here’s an example

syslog-compliant log entry:

Nov 5 09:14:05 enoch rails[1234]: Is this thing on?

In addition to the timestamp and message, we now also need the host-

name (enoch is my hostname), the process name (rails), and the process

id (1234). To format log entries this way, we just modify our custom

formatter slightly. Here’s the revised call method:

Download buffet/lib/recipes_log_formatter.rb

def call(severity, time, program_name, message)

datetime = time.strftime("%b %d %H:%M:%S")

process = "rails[#{$PID}]"

hostname = Socket.gethostname.split('.')[0]

message = (String === message ?

message : message.inspect).gsub(/\n/, '').strip

"#{datetime} #{hostname} #{process}: #{message}\n"

end

We ignore the program_name parameter and instead use the process

name rails to keep things consistent. And the syslog format is picky about

white space, so we tidy up the message. This call method is a tad more

involved, and you might want to experiment with it in script/console, for

example:

$ ruby script/console production

>> RAILS_DEFAULT_LOGGER.error 'Is this thing on?'

81. Read more about syslog using man syslog

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/lib/recipes_log_formatter.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=265

62. ANALYZING YOUR LOG FILES 266

You’ll need to check the production.log file to see if the output is in the

correct format. Then when you run your app in production, you should

see something like this in the production.log file:

Nov 05 09:45:16 enoch rails[1234]: Processing PeopleController#index...

Nov 05 09:45:16 enoch rails[1234]: Session ID: BAh7BzoMY3...

Nov 05 09:45:16 enoch rails[1234]: Parameters: {"action"=>"index"...

Nov 05 09:45:16 enoch rails[1234]: Person Load (0.000277) SELECT * FROM...

Nov 05 09:45:16 enoch rails[1234]: Rendering template within layouts/people

Nov 05 09:45:16 enoch rails[1234]: Rendering people/index

Nov 05 09:45:16 enoch rails[1234]: Completed in 0.04401 (22 reqs/sec) |

Rendering: 0.00141 (3%) | DB: 0.00028 (0%) | 200 OK

So now that we have log entries in the syslog format, what can we do?

Basically we can now run our production log files through any log file

analyzer that expects the syslog format. For example, we could install

the ProductionLogAnalyzer gem:

$ gem install production_log_analyzer --include-dependencies

Then to identify potential performance bottlenecks in your application,

use the pl_analyze command against your production log file to generate

a report:

$ pl_analyze log/production.log

Request Times Summary: Count Avg Std Dev Min Max

ALL REQUESTS: 8 0.011 0.014 0.002 0.045

PeopleController#index: 2 0.013 0.010 0.003 0.023

PeopleController#show: 2 0.002 0.000 0.002 0.003

PeopleController#create: 1 0.005 0.000 0.005 0.005

PeopleController#new: 1 0.045 0.000 0.045 0.045

PeopleController#edit: 1 0.004 0.000 0.004 0.004

PeopleController#update: 1 0.005 0.000 0.005 0.005

Slowest Request Times:

PeopleController#new took 0.045s

PeopleController#index took 0.023s

PeopleController#update took 0.005s

PeopleController#create took 0.005s

PeopleController#edit took 0.004s

PeopleController#index took 0.003s

PeopleController#show took 0.003s

PeopleController#show took 0.002s

DB times and Render times follow

To get a performance report on a recurring basis, run the pl_analyze

command in a cron job and use the -e option to send the results to an

e-mail address. Or generate a performance report on demand from the

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=266

62. ANALYZING YOUR LOG FILES 267

comfort of your own computer by running a Capistrano task such as

the following:

desc "Analyze Rails Log remotely"

task :analyze, :roles => :app do

run "pl_analyze #{shared_path}/log/#{rails_env}.log" do |ch, st, data|

print data

end

end

Use pre-defined log file formats or create your own to get the most out

of your log files.

Also See

• The Rails Analyzer Tools (http://rubyforge.org/projects/rails-analyzer)

includes other handy tools for analyzing Rails log files. For exam-

ple, the rails_stat command shows a real-time report of application

performance by analyzing log files in the syslog format.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://rubyforge.org/projects/rails-analyzer
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=267

Recipe 63

Formatting Dates and Times

Problem

You want to customize the format of dates and times displayed in your

application. Then, when you inevitably change your mind and need to

tweak a format that’s used on multiple pages of the application, you

want to make the change in only one spot.

Solution

Dates and times are ubiquitous in web applications: when an article

was posted, the day you placed an order, how long you’ll have to wait for

your Wii to ship, and so on. The text you see when you convert a Ruby

date or time to a string is usually good enough for us programmers, but

often too impersonal for your average web surfer. Sometimes you need

to dress up the text a bit, preferably without fiddling around with the

strftime method in every case.

Rails already has some pre-defined date and time formats to help get

you started. You use them by calling the to_s method on a Date or Time

object, passing in the name of the format. As always, script/console is a

great way to experiment, so let’s go there for some examples. If we want

to get the current time in a format that’s compatible with our database,

we’d use:

$ ruby script/console

>> now = Time.now

=> Tue Nov 06 13:48:58 -0700 2007

>> now.to_s(:db)

=> "2007-11-06 13:48:58"

Or if we want to show today’s date in a long format, we’d use:

$ ruby script/console

>> today = Date.today

=> Tue, 06 Nov 2007

>> today.to_s(:long)

=> "November 6, 2007"

In addition to :db and :long, Rails includes formats named :short and

:rfc822. You can also use the :time format on DateTime objects to just get

the time part of the date and time.

Prepared exclusively for Jeanne McDade

63. FORMATTING DATES AND TIMES 269

If you discover a default format that suits you, go ahead and start using

it in your application. At some point though you may find you need to

trick out an existing format or, better yet, create a new one altogether.

Say, for example, we want to render the time at which an order was

placed using a custom format name, like so:

<%= order.placed_at.to_s(:chatty) %>

And we want the resulting time formatted like so:

03:45 PM MST on November 06, 2007

To register in our custom format, we need to add the :chatty format to

the hash of pre-defined formats. Putting this code in an initializer file

ensures it will be automatically loaded. Here’s what it looks like:

Download buffet/config/initializers/date_time_formats.rb

ActiveSupport::CoreExtensions::Time::Conversions::DATE_FORMATS.merge!(

:chatty => "%I:%M %p %Z on %B %d, %Y"

)

Similarly, we can define custom formats for dates. Suppose we display

the date a product will become available in various places around our

application. Using a named format means we don’t have to remember

the formatting details, when we’re writing the code or reading it:

<%= product.available_on.to_s(:weekday) %>

We just need to add the :weekday format to the hash of date conver-

sions:

Download buffet/config/initializers/date_time_formats.rb

ActiveSupport::CoreExtensions::Date::Conversions::DATE_FORMATS.merge!(

:weekday => "%A: %B %d, %Y"

)

This gives us the following format:

Tuesday: November 06, 2007

Even better, we can encapsulate the calls to our formatters inside view

helper methods, for example:

module ProductsHelper

def available_on(product)

product.available_on.to_s(:weekday)

end

end

So now we have more freedom on two axes of change. If we need to

change what it means for any object to be represented in the weekday

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/buffet/config/initializers/date_time_formats.rb
http://media.pragprog.com/titles/fr_arr/code/buffet/config/initializers/date_time_formats.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=269

63. FORMATTING DATES AND TIMES 270

format, we modify the value of that format in our initializer file. If we

need to specifically change the format for a product’s availability, we

modify the view helper method. And that’s what being DRY is all about.

Discussion

As a matter of style, consider always defining your own formats that

have semantic, rather than format-related, meaning. For example, :short

implies “display in this format” whereas in your application using :order_date,

for example, is more meaningful.

We didn’t go into detail about the strftime82 method. It has a number of

single-character directives for formatting dates and times into strings.

A few minutes reviewing the documentation (ri strftime) is, er, time well

spent.

82. http://ruby-doc.org/core/classes/Time.html#M000297

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://ruby-doc.org/core/classes/Time.html#M000297
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=270

Recipe 64

Geocoding to Find Things By

Location

By Andre Lewis (http://earthcode.com)

Andre Lewis has been working with technology for the last nine years. His experience

ranges from large-scale enterprise consulting with Accenture to startup ventures and open

source projects. He currently runs his own business, developing Ruby on Rails applications

and consulting on Web 2.0 technologies. When he’s not working with clients or exploring

the latest technologies, he likes to mountain bike, camp, and ride his motorcycle.

Problem

Your application needs to find things based on a physical location. For

example, you need to be able to find restaurants up to half a mile from

some point, ordered by distance.

Ingredients

• The GeoKit plugin:83

$ script/plugin install svn://rubyforge.org/var/svn/geokit/trunk

• An API key for one or more geocoding web services (instructions

included)

• A database that supports trigonometric functions (sorry, SQLite

won’t cut it)

83. http://geokit.rubyforge.org/

Prepared exclusively for Jeanne McDade

http://earthcode.com
http://geokit.rubyforge.org/

64. GEOCODING TO FIND THINGS BY LOCATION 272

Solution

When you’re hungry for sushi, you need to find the nearest sushi bars...

and fast! So here’s the app we need to build:

Punch in your current location and a radius, and you get a list of sushi

bars ordered by distance:

With that goal in mind, we obviously need a way to measure the dis-

tance from one street address (where we are) to another (where we could

go). It turns out literal street addresses make for lousy math formulas.

To accurately calculate the distance between two street addresses, we

need their latitude and longitude (lat/lng). Here’s the really good news:

we don’t have to walk the entire surface of earth while holding a GPS

unit or do any math. Thankfully there are a number of online geocoding

services that can handle that for us.

The first step then is to create an account with a geocoding service:

Google84 and Yahoo85 both provide free geocoding services. For this

recipe we just need access to one.

84. http://www.google.com/apis/maps/signup.html

85. http://developer.yahoo.com/wsregapp/

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://www.google.com/apis/maps/signup.html
http://developer.yahoo.com/wsregapp/
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=272

64. GEOCODING TO FIND THINGS BY LOCATION 273

Once you’ve signed up for an account (don’t worry, it’s fairly painless),

you’ll end up getting a key that uniquely identifies your application. We

just plug that key into our config/environment.rb file, which the GeoKit

plugin updated when it was installed:

GeoKit::Geocoders::yahoo = 'REPLACE_WITH_YOUR_YAHOO_KEY'

GeoKit::Geocoders::google = 'REPLACE_WITH_YOUR_GOOGLE_KEY'

Now it’s time to pump some geocoded data into our database: sushi

restaurant names, addresses, and their corresponding latitude and lon-

gitude. We’ll use scaffolding to create a Restaurant resource for that:

$ script/generate scaffold restaurant name:string ←֓

address:string lat:float lng:float

$ rake db:migrate

This gives us everything we need to start creating restaurant data.

Except we don’t know the latitude and longitude for an address, and

even if we did we wouldn’t want to be typing them in. No worries—

we’ll let our geocoding service handle that. We just need to add the

acts_as_mappable method with the auto_geocode option to our Restau-

rant model class:

Download Geocoding/app/models/restaurant.rb

class Restaurant < ActiveRecord::Base

validates_presence_of :lat, :lng

acts_as_mappable :auto_geocode => true

end

OK, let’s see if we have everything wired together:

$ ruby script/console

>> r = Restaurant.create(:name => "Sushi Den",

:address => "1487 S Pearl St, Denver, CO")

=> #<Restaurant id: 9 ...>

>> r.lat

=> 39.689612

>> r.lng

=> -104.98041

Hey, look at that! When we created the restaurant record, it automati-

cally got saved with its latitude and longitude values. Let’s see how that

all worked. The :auto_geocode=>true option to acts_as_mappable added

a before_validation_on_create callback method to our Restaurant class. If

we wanted to do the same thing manually (or we just wanted more fine-

grained control), we could have left off the :auto_geocode=>true option

and written this code instead:

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Geocoding/app/models/restaurant.rb
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=273

64. GEOCODING TO FIND THINGS BY LOCATION 274

class Restaurant < ActiveRecord::Base

validates_presence_of :lat, :lng

acts_as_mappable

before_validation_on_create :geocode_address

private

def geocode_address

geo = GeoKit::Geocoders::MultiGeocoder.geocode(address)

errors.add(:address, "Could not geocode address") unless geo.success

self.lat, self.lng = geo.lat, geo.lng if geo.success

end

end

The workhorse here is the MultiGeocoder class. When we create a new

Restaurant object, the value of the address attribute (you can specify

a different field name if needed) is transparently sent to whichever

geocoding service we’ve configured. It then sends back the latitude and

longitude values for the address, pokes them into our model attributes,

and then carries on creating the record.

Now that we’ve geocoded our restaurant’s address and stored its lat/lng

values in the database, we’re on to our next step: finding sushi bars

near us. This turns out to be trivial thanks to location-based finder

methods added by the GeoKit plugin. Assuming we’ve entered a few

more restaurants, here’s how we find restaurants ordered by distance

from a given location, but only up to 5 miles away:

>> places = Restaurant.find :all,

:origin => "9637 East County Line Road, Englewood, CO",

:within => 5, :order => 'distance'

>> places.size

=> 4

>> places.first.distance

=> "0.84535001110305"

It’s easy to gloss over what’s happening here because it looks just like

the ActiveRecord finders we’re already used to, with a couple location-

specific options. But in fact there’s a bit more going on behind the

scenes.

First the finder sends off a request to our geocoding service to get the

latitude and longitude values for the address string we used as our

origin. Then it computes the distance from the origin’s lat/lng to the

lat/lng of each of our restaurants by running a SQL query representing

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=274

64. GEOCODING TO FIND THINGS BY LOCATION 275

a trigonometric formula.86 In the process of performing the query, a

distance field is added to all the Restaurant objects returned by the finder.

This represents the distance (in miles, by default) from the origin we

used in the query.

If we’re just looking for the closest sushi bar (the I’m Feeling Lucky of

geocoding), we use:

Restaurant.find :closest, :origin => "9637 East County Line Road, Englewood, CO"

All we need now is a form that asks for the two variables—the address

and the radius—and a controller action that runs the query. There’s

nothing interesting about the form. Here’s the controller action:

Download Geocoding/app/controllers/restaurants_controller.rb

def search

@address = params[:address]

@within = params[:within]

@restaurants = Restaurant.find :all,

:origin => @address,

:within => @within,

:order => 'distance'

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @restaurants }

end

end

To tidy this up, we’d tuck all the options behind a custom finder method

that we’d call like this:

@restaurants = Restaurant.near(@address, @within)

Squirreling away the form parameters in instance variables lets us

remind the user what they were searching for on the search results

page, just like we had in our opening screenshot:

Download Geocoding/app/views/restaurants/search.html.erb

<h1><%= pluralize(@restaurants.size, 'sushi bar') %>

within <%= h @within %> miles:</h1>

<% for restaurant in @restaurants -%>

<p>

86. The GeoKit plugin uses the Haversine formula (http://en.wikipedia.org/wiki/Haversine_formula)

to calculate the distance between two lat/lng points.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Geocoding/app/controllers/restaurants_controller.rb
http://media.pragprog.com/titles/fr_arr/code/Geocoding/app/views/restaurants/search.html.erb
http://en.wikipedia.org/wiki/Haversine_formula
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=275

64. GEOCODING TO FIND THINGS BY LOCATION 276

Mike says. . .

If You Thought This Was Difficult...

Several years and at least one programming language ago, I
was contract programming on a web app for a ski/snowboard
manufacturer. They didn’t have a storefront, but their site let you
search for dealers who sold their gear in your area. Back then
you needed all the geocoded information in your database,
and an Excel spreadsheet to figure out how long it would take
to implement a dealer locator. These days you can have it
done in the time it takes the morning coffee to percolate.

<%= link_to restaurant.name, restaurant %>

at <%= h restaurant.address %>

<i>(<%= sprintf("%.2f", restaurant.distance) %> miles away)</i>

</p>

<% end -%>

Discussion

Sometimes you want to calculate distance in memory, rather than in

the context of database queries. To do that, you can call methods of the

MultiGeocoder class directly:

$ ruby script/console

>> here = MultiGeocoder.geocode("9637 East County Line Road, Englewood, CO")

>> there = MultiGeocoder.geocode("9447 Park Meadows Dr, Lone Tree, CO")

>> here.distance_to(there)

=> 0.845315041284098

The MultiGeocoder will use the geocoding services you have configured.

If one geocoding service fails to geocode an address, MultiGeocoder will

try the next service, in the order you’ve configured them.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=276

Recipe 65

Giving Users Their Own

Subdomain

By Mike Mangino (http://www.elevatedrails.com)

Mike Mangino is the founder of Elevated Rails. He lives in Chicago with his wife Jen and

their two Samoyeds.

Problem

All the cool sites seem to allow you to have your name or organization in

your account URL: mike.famousprogrammers.com, acme.jobpostings.com,

and so on. It’s the vanity plate of the web. So how do you give your

users their own URL?

Solution

First we need our Account model to include a subdomain attribute. Here’s

the minimum migration:

create_table :accounts do |t|

t.string :name, :subdomain

end

Then we’ll add a handy method to the Account model to determine

which account to use for a given subdomain:

class Account < ActiveRecord::Base

def self.for(subdomains)

find_by_subdomain(subdomains.first) unless subdomains.blank?

end

end

When users access our site by typing in their unique URL, we need to

load up their account. Using a before_filter in the AccountsController will

do the trick:

Download Subdomains/app/controllers/accounts_controller.rb

class AccountsController < ApplicationController

before_filter :require_account

def index

render :text => "<h1>Welcome to your site!</h1>"

end

Prepared exclusively for Jeanne McDade

http://www.elevatedrails.com
http://media.pragprog.com/titles/fr_arr/code/Subdomains/app/controllers/accounts_controller.rb

65. GIVING USERS THEIR OWN SUBDOMAIN 278

end

The require_account method tries to associate the subdomain of the

incoming URL with an account, and redirects to the main host if an

account can’t be found.

class ApplicationController < ActionController::Base

def require_account

@account = Account.for(request.subdomains)

if @account.nil?

redirect_to welcome_url(:host => MAIN_HOST, :port => request.port)

end

end

end

To test this out, we’ll need some domain names that point to our devel-

opment server. We’ll just add entries to our /etc/hosts file.87 We’ll need to

define at least a few different hostnames: one for testing subdomains,

one for our main page, and one to test a subdomain with no account.

127.0.0.1 mike.example.com www.example.com fake.example.com

In a production environment, you’ll want to set up your DNS server. You

should create an A record for your www.example.com domain. Then cre-

ate a CNAME record for *.example.com that points to www.example.com.

Once we’ve configured our domain names, we can define the MAIN_HOST

constant in our config/environments/development.rb file:

MAIN_HOST = "www.example.com"

You’ll need to set the appropriate URL in your other environment files,

as well. For example, you’ll use a different MAIN_HOST in development

than in production.

Now when we go to http://mike.example.com:3000, we see the welcome

URL because we don’t have an account. So let’s create an account:

$ ruby script/console

>> Account.create(:subdomain => "mike")

Now if we go to http://mike.example.com:3000 we should see the wel-

come message for that custom URL. That is, the before_filter found our

account and let us into the AccountsController.

So far, so good. Now let’s say we don’t want to require our users to log in

on their own subdomain. Instead, we’ll let them login at www.example.com

87. On Windows, the hosts file is in the C:\Windows\System32\Drivers\etc directory.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

www.example.com
www.example.com
http://mike.example.com:3000
http://mike.example.com:3000
www.example.com
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=278

65. GIVING USERS THEIR OWN SUBDOMAIN 279

and then redirect them to their subdomain, such as mike.example.com.

To do that, we need to make sure all the cookies will use the example.com

domain. That’s easy enough—we just add this to the config/environments/production.rb

file:

ActionController::Base.session_options[:session_domain] = '.example.com'

This code forces all cookies to use the example.com domain, and things

will work.

Now let’s do one better: We’ll allow our users to set up a CNAME so

that their site can be accessed by a custom domain. For example,

they can have their registered customdomain.com domain point to their

mydomain.example.com subdomain on our application. To make it work,

we need to add a domain column to our Account model and change the

Account.for method. Here’s the final version of our model:

Download Subdomains/app/models/account.rb

class Account < ActiveRecord::Base

def self.for(domain, subdomains)

account = find_by_domain(domain)

unless subdomains.blank?

account ||= find_by_subdomain(subdomains.first)

end

account

end

end

We also need to change the before_filter to shuttle the domain parameter

through to the Account.for method:

def require_account

@account = Account.for(request.host, request.subdomains)

unless @account

redirect_to welcome_url(:host => MAIN_HOST, :port => request.port)

end

end

Custom domains make for nice branding. Unfortunately, it confuses

our sessions because all of our cookies are set up for .example.com. At

first blush, it may seem we could just change the cookie domain in our

require_account before filter, such as:

ActionController::Base.session_options[:session_domain] = '.customdomain.com'

Sadly, this won’t work. By the time our filter is executed, the outbound

session cookies have already been created. Instead, we’ll have to poke

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

mike.example.com
example.com
example.com
customdomain.com
mydomain.example.com
http://media.pragprog.com/titles/fr_arr/code/Subdomains/app/models/account.rb
.example.com
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=279

65. GIVING USERS THEIR OWN SUBDOMAIN 280

around in the CGI library and change the domain of each cookie after

the fact.

Download Subdomains/app/controllers/application.rb

def set_cookie_domain(domain)

my_cgi = request.instance_eval "@cgi"

ocookies = my_cgi.instance_eval("@output_cookies")

unless ocookies.blank?

ocookies.each do |cookie|

cookie.domain = domain

end

end

end

It’s ugly, but we need it to support custom domains as well as subdo-

mains. Now that we have a way to set the cookie domain, we need to

change our require_account method again to use it:

Download Subdomains/app/controllers/application.rb

def require_account

@account = Account.for(request.host, request.subdomains)

if @account

if request.host == @account.domain

set_cookie_domain(@account.domain)

end

else

redirect_to welcome_url(:host => MAIN_HOST, :port => request.port)

end

end

Discussion

You’ll want to exclude people from registering www as a subdomain, as

well as pop, pop3, smtp, mail, ftp, and friends, too. It’s also not wise to

allow people to register domains under the main name of your app.

If you’re going to use SSL, you’ll need a wildcard SSL certificate. How-

ever, doing so won’t completely handle custom domains such as mike.otherurl.com.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/Subdomains/app/controllers/application.rb
http://media.pragprog.com/titles/fr_arr/code/Subdomains/app/controllers/application.rb
mike.otherurl.com
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=280

Recipe 66

Tunneling Back to Your

Application

By Chris Haupt (http://www.buildingwebapps.com)

Christopher Haupt is co-founder and Chief Technology Officer at Collective Knowledge

Works, Inc. He is a software architect, developer, and educator with over 25 years expe-

rience. These days he is focused on applying his experience in ways that can serve the

wider development community through efforts such as http://www.buildingwebapps.com/.

Problem

You’re developing the next great Facebook (or other) social network

application and you don’t have the resources (time, spare servers, abil-

ity to interrupt existing app, etc.) to constantly redeploy your non-

released app for testing. The platform you’re deploying to acts as a kind

of proxy for your application, so it needs to have public access to your

application to operate. Other kinds of web services may have a similar

need, calling upon your application via web service APIs. In all cases,

your development machine may be behind a firewall or otherwise not

accessible to the public Internet.

Ingredients

• A publicly accessible server running the SSH daemon (sshd)

• An SSH client (ssh) on your development machine

Solution

Good ol’ Secure Shell (SSH) lets us set up a secure connection (a reverse

tunnel) between our development machine and a publicly accessible

server. Once the tunnel is open, we can point a social network service

such as Facebook to the URL of our public server. Any request made

to the public server will be transparently forwarded to our development

machine. We can set that up using commands at the terminal, but it’s

tedious and repetitive. So let’s automate it!

First we need to make sure that the SSH daemon (sshd) is set up to

allow our public server to act as a gateway. Let’s start by logging in via

SSH:

Prepared exclusively for Jeanne McDade

http://www.buildingwebapps.com
http://www.buildingwebapps.com/

66. TUNNELING BACK TO YOUR APPLICATION 282

$ ssh admin@www.example.com

Next we locate the sshd_config file (it’s /etc/sshd_config on my OS). Within

that file, we need to make sure a few important variables are set. Now,

be very careful here! If you mess up something in this file and restart

the sshd process, you’ll likely get locked out of your server. So proceed

with caution, and double check each variable:

• GatewayPorts needs to be set to clientspecified for recent versions of

OpenSSH (4.0 and newer). On others, such as OpenSolaris’ default

install, it should be set to yes.

• AllowTcpForwarding needs to be set to yes.

• Depending on your configuration, you may need to update the

KeepAlive variable or the TCPKeepAlive variable to yes. You can change

this later if you find your connection drops out frequently. Alterna-

tively, you can add these keep alive settings to your local ~/.ssh/config

file:

Host www.example.com

ServerAliveInterval 120

Once we’re done editing the sshd_config file, we need to save it and

restart the sshd process. (This is OS-specific, so check your documen-

tation for the right way to do it on your system.)

Next we turn our attention to our local Rails application. To automate

setting up the reverse tunnel, we’ll create a YML configuration file and

create a Rake task. Here’s the configuration file:

Download TunnelingBackToYourApp/config/tunnel.yml

development:

public_host_username: admin

public_host: www.example.com

public_port: 8868

local_port: 3000

test:

public_host_username: admin

public_host: www.example.com

public_port: 8868

local_port: 3000

production:

public_host_username: admin

public_host: www.example.com

public_port: 8868

local_port: 3000

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/TunnelingBackToYourApp/config/tunnel.yml
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=282

66. TUNNELING BACK TO YOUR APPLICATION 283

You can choose any public port you wish, just be sure it isn’t in use by

another program. The local_port is the port you’ll run your development

Rails environment on. The Rake task just needs to load up the config-

uration for the current Rails environment and use it to fire up a secure

connection:

Download TunnelingBackToYourApp/lib/tasks/tunnel.rake

namespace :tunnel do

desc "Create a reverse tunnel from a public server to a private \

development server. Use tunnel.yml for parameter configuration."

task :start => :environment do

SSH_TUNNEL = YAML.load_file("#{RAILS_ROOT}/config/tunnel.yml")[RAILS_ENV]

public_host_username = SSH_TUNNEL['public_host_username']

public_host = SSH_TUNNEL['public_host']

public_port = SSH_TUNNEL['public_port']

local_port = SSH_TUNNEL['local_port']

puts "Starting tunnel #{public_host}:#{public_port} \

to 0.0.0.0:#{local_port}"

exec "ssh -nNT -g -R *:#{public_port}:0.0.0.0:#{local_port} \

#{public_host_username}@#{public_host}"

end

end

OK, now let’s fire it up:

$ rake tunnel:start

This starts a tunnel in the foreground.

If we now run our Rails app on the correct local port (3000) and hit

the public server’s URL (http://www.example.com:8868, for example), we

should see our app. Once this works, we can then go ahead and set our

Facebook application callback URL to http://www.example.com:8868/myapp,

for example. Requests will happily flow to our development machine

and we won’t need to deploy to test changes.

Finally, to kill the connection, simply send an interrupt (CTRL-C) in the

terminal.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://media.pragprog.com/titles/fr_arr/code/TunnelingBackToYourApp/lib/tasks/tunnel.rake
http://www.example.com:8868
http://www.example.com:8868/myapp
http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=283

66. TUNNELING BACK TO YOUR APPLICATION 284

Discussion

Be sure to enable your Facebook (or other) application to receive traf-

fic from the IPs of both your public servers and your development

machine. If your development machine (or a router upstream) is sup-

plied with dynamic IPs, you will have to update your Social Networking

setting whenever the IP number changes.

Each platform has different set-up techniques for pointing the apps to

your tunneled server, but all can use the convenience factor of pointing

to a dev box for quick debugging/iterating on code work.

You can reduce the need for entering passwords by setting up SSH

keys. There are plenty of good resources on the ’net that explain how to

do this for your OS.

You can expand on externalizing this solution for a team by adding the

concept of user names to your YAML configuration and selecting on

the current username found in the development system’s environment

variables.

There are various ways to check to see if the tunnel is running, but

these tend to be OS specific uses of netstat or other tools. Check your

OS doc and a quick Google search will point you down the path of

automating that too!

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=284

Recipe 67

Monitoring (and Repairing)

Processes with Monit

Problem

Your application relies on external processes and you need to make

sure that all the moving parts continue to, well, move in a well-oiled

fashion. Of course you don’t want to constantly babysit processes, so

you need a way to train the computer to do it for you.

Ingredients

You’ll need the Monit88 utility. Many Linux distributions include Monit

and you can use MacPorts to get it for Mac OS X. If all else fails, it’s

trivial to build from source:

$ tar zxvf monit-x.y.z.tar.gz

$ cd monit-x.y.z

$./configure

$ make && make install

Solution

Monit makes it easy to automate the monitoring and mending of pro-

cesses. For example, in Recipe 26, Off-Loading Long-Running Tasks

to BackgrounDRb, on page 133 we fired up a BackgrounDRb server

process and then walked away. In production, however, we’re wise to

employ Monit to periodically check that the process is running, and

restart it if something has gone awry.

First we need to write a simple control file to tell Monit what to monitor

and how to react to certain conditions. Monit looks for the control file

first in ~/.monitrc, then in /etc/monitrc, and finally ./monitrc. Pick your

favorite spot.

The control file starts out with a few global settings:

88. http://tildeslash.com/monit/download/

Prepared exclusively for Jeanne McDade

http://tildeslash.com/monit/download/

67. MONITORING (AND REPAIRING) PROCESSES WITH MONIT 286

set daemon 30

set logfile /path/to/monit.log

set mailserver smtp.example.com

set alert sys-admin@example.com

set httpd port 9111

allow localhost

In this case, Monit will wake up every 30 seconds and check each pro-

cess (we’ll get there), and log status and error messages to our log

file. Any unexpected events will be e-mailed to our sysadmin via the

SMTP server. The last line starts Monit’s built-in HTTP server on port

9111 and makes it accessible only via the localhost, which is useful for

checking the status of processes.

Next we define the services we want Monit to keep an eye on. In this

case we’re just interested in the BackgrounDRb server process, so we

only have one service entry. The syntax is quite readable:

check process backgroundrb_11006

with pidfile "/path/to/deploy/current/log/backgroundrb.pid"

start = "/path/to/deploy/current/script/backgroundrb start"

stop = "/path/to/deploy/current/script/backgroundrb stop"

if cpu > 90% for 2 cycles then restart

if totalmem > 256 MB for 2 cycles then restart

if 4 restarts within 4 cycles then timeout

group backgroundrb

When the BackgrounDRb server starts up, it drops a process id (PID)

file. This is handy because Monit can peek inside the file to determine

which process to monitor. If the process has died for some reason, the

start directive tells Monit how to fire it back up again. The stop directive

is used if we manually stop or restart the process from the command

line (more on that later).

OK, so if the process dies, it gets restarted. But other undesirable things

can happen too, such as the process going rogue and chewing up pre-

cious resources. So Monit gives us a way to test process conditions and

take appropriate action early. In this case, if our process exceeds 90%

CPU or 256 MB of memory for a duration of 2 Monit check cycles (60

seconds total), then the process will be restarted. And if Monit ends up

restarting the process 4 times in a row, then Monit throws up its hands

and calls in the humans.

With the configuration file in place, let’s run a quick syntax check and

then start Monit from the command line:89

89. You many want to start Monit automatically after a reboot using init and if the Monit

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=286

67. MONITORING (AND REPAIRING) PROCESSES WITH MONIT 287

$ monit -t

$ monit

At this point it’s a good idea to kill the BackgrounDRb server process

manually, and watch the Monit log file to make sure it gets started back

up on the next cycle.

And that’s really all there is to it! We have a fully automated babysitter.

No news is good news.

To check the status of our BackgrounDRb server, and all things being

monitored, we just use the status command:

$ monit status

The monit daemon 4.9 uptime: 25m

Process 'backgroundrb_11006'

status running

monitoring status monitored

pid -1

parent pid -1

uptime 32m

data collected Thu Dec 27 12:50:25 2007

In addition to monitoring processes, you can also use Monit to start,

stop, and restart processes. For example, to restart the BackgrounDRb

server process by its name use:

$ monit restart backgroundrb_11006

Or, if you have multiple BackgrounDRB server processes in the back-

groundrb group, you could restart them all using the group name:

$ monit restart all -g backgroundrb

If you change your control file, you’ll need to restart Monit so that it

loads the latest configuration:

$ monit restart

Discussion

This barely scratches the surface of what Monit can do. It’s a powerful,

and yet easy to use, tool that can monitor processes, files, directories,

and even devices on a Unix system. So the next time you’re faced with

keeping an eye on a resource, look to Monit for automation bliss.

daemon itself dies, init will restart it.

Report erratum

this copy is (B1.02 printing, January 2, 2008)
Prepared exclusively for Jeanne McDade

http://books.pragprog.com/titles/fr_arr/errata/add?pdf_page=287

Appendix A

Bibliography

[Fow06] Chad Fowler. Rails Recipes. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2006.

[HL06] Christian Hellsten and Jarkko Laine. Beginning Ruby on

Rails E-Commerce: From Novice to Professional. 2006.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development with Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2005.

Prepared exclusively for Jeanne McDade

Index
C
Capistrano recipes, 233–239, 246–252

Code

downloading, 12

Configuration recipes, 58–60, 240–245,

258–270, 285–287

Console recipes, 157–164

D
Database recipes, 51–63, 205–208

Deployment recipes, 227–229,

237–239, 247–256

Design recipes, 109–125

Discussion group for recipes, 11

Downloading code, 12

E
E-mail recipes, 142–155

F
Forum for discussing recipes, 11

I
Integration recipes, 127–140

P
Performance recipes, 61–63, 145–150,

209–225

R
Recipe discussion group, 11

Recipes

Capistrano, 233–239, 246–252

Configuration, 58–60, 240–245,

258–270, 285–287

Console, 157–164

Database, 51–63, 205–208

Deployment, 227–229, 237–239,

247–256

Design, 109–125

E-mail, 142–155

Integration, 127–140

Performance, 61–63, 145–150,

209–225

REST, 15–32, 92–94

Routing, 15–22, 29–35

Search, 37–49

Security, 23–28, 227–231, 246

Testing, 166–203, 281–284

User Interface, 65–107, 115–119,

169–173, 277–280

REST recipes, 15–32, 92–94

Routing recipes, 15–22, 29–35

S
Search recipes, 37–49

Security recipes, 23–28, 227–231, 246

Source code, downloading, 12

T
Testing recipes, 166–203, 281–284

U
User Interface recipes, 65–107,

115–119, 169–173, 277–280

Prepared exclusively for Jeanne McDade

First page of blurb

Prepared exclusively for Jeanne McDade

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Advanced Rails Recipes

http://pragprog.com/titles/fr_arr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fr_arr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Prepared exclusively for Jeanne McDade

http://pragprog.com/titles/fr_arr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fr_arr
www.pragprog.com/catalog

	Contents
	Introduction
	What Makes a Good Recipe Book?
	What Makes This an Advanced Recipe Book?
	Who's It For?
	Who's Talking?
	Rails Version
	Resources
	Acknowledgments
	Tags and Thumb tabs

	REST and Routes Recipes
	Putting A Resource On The Web
	Adding Your Own REST Actions (Or Not)
	Authenticating REST Clients
	Custom Response Formats
	Catch All 404s

	Search Recipes
	Improve SEO with Dynamic Meta Tags
	Full-Text Search with Ferret
	Active Record on Solr

	Database Recipes
	Adding Foreign Key Constraints
	Write Your Own Custom Validations
	Analyzing SQL Queries
	Taking Advantage of Master/Slave Databases

	User Interface Recipes
	Replacing In-View Raw JavaScript with RJS
	Handling Multiple Models In One Form
	Simplifying Controllers With a Presenter
	Validating Required Form Fields Inline
	Creating a Wizard
	Updating Partial Resources with Ajax
	Uploading Images and Creating Thumbnails
	Decouple Your JavaScript with Low Pro

	Design Recipes
	Freshening Up Your Models With Scope
	Keeping Forms Dry and Flexible
	Prevent Train Wrecks with Delegate
	Creating Meaningful Relationships Through Proxies

	Asynchronous Recipes
	Processing an Asynchronous Workflow
	Off-Loading Long-Running Tasks to BackgrounDRb

	E-mail Recipes
	Validating E-mail Addresses
	Receiving E-mail Reliably via POP or IMAP
	Keeping E-mail Addresses Up To Date

	Console Snacks
	Writin' Console Methods
	Console Loggin'
	Playin' in the Sandbox
	Accessin' Helpers
	Shortcuttin' the Console

	Testing
	Creating Your Own Rake Test Tasks
	Testing JavaScript With Selenium
	Mocking With a Safety Net
	Getting Started with BDD
	Describing Behaviour from the Outside-In With RSpec
	Reducing Dependencies with Mocks
	Fixtures Without Frustration
	Tracking Test Coverage with RCov
	Testing HTML Validity

	Performance and Scalability Recipes
	Looking Up Constant Data
	Serving Page Caches to Facebook
	Profiling In The Browser
	Caching Up With the Big Guys
	Dynamically Updating Cached Pages

	Security Recipes
	Flipping On SSL
	Locking Down Sensitive Data

	Deployment and Capistrano Recipes
	Custom Maintenance Pages
	Running Multi-Stage Deployments
	Creating New Environments
	Managing Plugin Versions
	Safeguarding the Launch Codes
	Config Files On-The-Fly
	Preserving Files Between Deployments
	Responding To Remote Prompts
	Generating Custom Error Pages

	Big-Picture Recipes
	Avoid Starting From Scratch
	Fail Early
	Analyzing Your Log Files
	Formatting Dates and Times
	Geocoding to Find Things By Location
	Giving Users Their Own Subdomain
	Tunneling Back to Your Application
	Monitoring (and Repairing) Processes with Monit
	Bibliography

	Index
	C
	D
	E
	F
	I
	P
	R
	S
	T
	U

